صفحه اصلی جستجو راهنمای خرید تماس با ما
دفترچه محاسبات

نمونه دفترچه محاسبات، فایل های SAP و DWG سازه و فونداسیون Substation

نمونه دفترچه محاسبات، فایل های SAP و DWG سازه و فونداسیون Substation

ضد انفجار



حجم: 59.8 مگابایت

قیمت: 75000 تومان

نحوه ارسال: دریافت آنلاین


توضیحات تکمیلی:

نمونه دفترچه محاسبات طراحی
SUBSTATION (ضد انفجار)
(Structure & Foundation)

Substation ها بخشی از فرآیند تولید، انتقال و توزیع برق هستند. وظیفه عمده آنها تبدیل ولتاژ بالا به به پایین و یا بالعکس است؛ در کنار این ممکن است عملیات مهم دیگری نیز در یک Substation به انجام برسد. جریان برق، از ایستگاه تولید تا محل نهایی مصرف، ممکن است از Substation های متعدد با سطوح ولتاژ مختلف عبور کند.
Substation ها ممکن است متعلق به شرکت متصدی تولید برق و یا یک مصرف کننده بزرگ صنعتی باشند. Substation ها عمدتاً بدون اپراتور و بصورت اتوماتیک (توسط سیستم SCADA) مورد بهره برداری قرار می گیرند.
پست های برق (یا همان Substation) انواع گوناگونی دارند. در سایت های بزرگ پتروشیمی، به منظور ایجاد ایمنی لازم و جلوگیری از بروز هر گونه آسیب در برابر انفجارهای احتمالی تجهیزات موجود، Substation ها بصورت بتنی و مقاوم در برابر بارهای ناشی از انفجار طراحی می شوند.
مجموعه کم نظیر موجود که با همت و تلاش مهندسان متخصص و مجرب صنعت پتروشیمی کشور تهیه شده، شامل:
- دفترچه محاسبات طراحی سازه Substation و همچنین فونداسیون مربوطه، با در نظر گرفتن بار انفجار (فایل word مشتمل بر 50 صفحه)
- نقشه های سازه و فونداسیون با جزئیات کامل اجرایی (34 فایل اتوکد)
- فایل طراحی Substation (فایل Sap2000)
می باشد.
امید آنکه مجموعه تهیه شده در خور مهندسان عزیز کشورمان باشد و بتواند اطلاعات مورد نیازشان را در اختیار قرار دهد.

TABLE OF CONTENTS
- General Notes
- Reference Codes And Standards
- Material Strength
- Structural System
- Geometry & Dimensions
- Loading
- Dead Loads
- Live Load
- Seismic Loads
- Calculation Of Seismic Response Coefficient
- Blast Loads
- Blast Pressures And Durations
- Either (High Pressure, Short Duration, Triangular Shock Loading)
- Or (Low Pressure, Long Duration, Triangular Loading)
- Static Load Equivalent Of Blast Pressures And Durations
- Calculation Of Blast Load
- Soil Condition
- Modeling
- Input Data
- Material Property Data
- Load Pattern Definitions
- Load Combinations
- Loading On Structure
- Dead Load
- Live Load
- Seismic Load
- Structural Design Data
- Column Design
- Longitudinal Reinforcement
- Transverse Reinforcement
- Beam Design
- Slab Design
- Wall Design
- Longitudinal Reinforcement
- Transverse Reinforcement
- Foundation Design
- Foundation Properties
- Load Combination Data
- Service Combinations
- Design Combinations
- Foundation Design Output
- X Direction Reinforcement
- Y Direction Reinforcement
- Soil Pressure
- Sliding And Overturning Control

مورد تأیید و استفاده شرکت های معتبر پتروشیمی
شامل:
فایل Word دفترچه محاسبات
فایل طراحی SAP
نقشه های اتوکد
گروه نرم افزاری دیتاسرا
www.datasara.com

 برچسب ها: 

فایل SAP

خرید فایل SAP

فروش فایل SAP

دفترچه محاسبات

دفترچه محاسبات

دانلود فایل SAP

دریافت فایل SAP

سازه و فونداسیون

فروش دفترچه محاسبات

خرید دفترچه محاسبات

فروش دفترچه محاسبات

نمونه فایل SAP سازه

نمونه فایل DWG سازه

خرید دفترچه محاسبات

نمونه دفترچه محاسبات

دانلود دفترچه محاسبات

دریافت دفترچه محاسبات

فروش سازه و فونداسیون

دانلود دفترچه محاسبات

دریافت دفترچه محاسبات

نمونه فایل Substation

فایل سازه و فونداسیون

خرید سازه و فونداسیون

دانلود سازه و فونداسیون

دریافت سازه و فونداسیون

فروش نمونه فایل DWG سازه

فروش نمونه فایل SAP سازه

خرید نمونه فایل DWG سازه

خرید نمونه فایل SAP سازه

فروش نمونه دفترچه محاسبات

خرید نمونه دفترچه محاسبات

دانلود نمونه فایل DWG سازه

دانلود نمونه فایل SAP سازه

دریافت نمونه فایل DWG سازه

دریافت نمونه فایل SAP سازه

فروش فایل سازه و فونداسیون

فروش نمونه فایل Substation

خرید فایل سازه و فونداسیون

خرید نمونه فایل Substation

دانلود نمونه دفترچه محاسبات

دریافت نمونه دفترچه محاسبات

سازه و فونداسیون Substation

دانلود فایل سازه و فونداسیون

دانلود نمونه فایل Substation

دریافت فایل سازه و فونداسیون

دریافت نمونه فایل Substation

نمونه فایل SAP سازه و فونداسیون

فروش سازه و فونداسیون Substation

خرید سازه و فونداسیون Substation

دانلود سازه و فونداسیون Substation

دریافت سازه و فونداسیون Substation

فروش نمونه فایل SAP سازه و فونداسیون

خرید نمونه فایل SAP سازه و فونداسیون

دانلود نمونه فایل SAP سازه و فونداسیون

دریافت نمونه فایل SAP سازه و فونداسیون

نمای مطلب:

STRUCTURE CALCULATION NOTE FOR SUBSTATION (Structure & Foundation)
TABLE OF CONTENTS
1. GENERAL NOTES 5
2. REFERENCE CODES AND STANDARDS 5
3. MATERIAL STRENGTH 6
4. Structural System 6
5. Geometry & dimensions 6
6. Loading 6
6.1. Dead Loads 6
6.2. Live Load 7
6.3. Seismic Loads 7
6.3.1. Calculation of Seismic Response Coefficient 7
6.4. Blast Loads 9
6.4.1. Blast Pressures and Durations 9
6.4.1.1. Either (High pressure, short duration, triangular shock loading) 9
6.4.1.2. Or (Low pressure, Long duration, triangular loading) 10
6.4.2. STATIC LOAD EQUIVALENT OF BLAST PRESSURES AND DURATIONS 10
6.4.3. Calculation of Blast Load 11
7. SOIL CONDITION 11
8. MODELING 12
9. Input data 15
9.1. Material Property Data 15
9.2. Load Pattern Definitions 16
9.3. Load Combinations 17
9.4. Loading On Structure 18
9.4.1. Dead Load 18
9.4.2. Live Load 19
9.4.3. Seismic Load 21
10. STRUCTURAL Design Data 21
10.1. Column Design 21
10.1.1. Longitudinal Reinforcement 22
10.1.2. Transverse Reinforcement 22
10.2. Beam Design 27
10.3. Slab Design 31
10.3.1. X Direction 31
10.3.2. Y Direction 35
10.4. Wall Design 38
10.4.1. Longitudinal Reinforcement 38
10.4.2. Transverse Reinforcement 40
10.5. Foundation Design 42
10.5.1. Foundation Properties 42
10.5.2. Load Combination Data 42
10.5.2.1. Service Combinations 42
10.5.2.2. Design Combinations 42
10.5.3. Foundation Design Output 42
10.5.3.1. X Direction Reinforcement 42
10.5.3.2. Y Direction Reinforcement 44
10.6. Soil Pressure 47
11. sliding and overturning Control 48
11.1. Sliding Control 48
11.2. Overturning Control 49
GENERAL NOTES
This Calculation booklet is prepared for design of structure and foundation of the Substation SS01/ITR3 on the Persian Gulf Seashore in the Bushehr province of Iran Assaluyeh (Phases 20,21).This building as per ref. 9 located nearer than 46m from unit edge and according to ref. 8 is identified as being within Fire Zone. Therefore, blast loading shall be considered for this building.
This building is divided in two parts (Switch Gear & ITR) and each part designed in two model A,B as mentioned below:
Model A- all walls have been considered and Blast load applied to roof and walls.
Model B- to design side beams and columns, only gravity loads (Dead and Live) applied to model without considering walls.
REFERENCE CODES AND STANDARDS
1. ACI 318-02 American Concrete Institute: Building Code Requirements for Structural Concrete.
2.IBC-2006 International Building Code
3.SG-22 Siting & Construction of New Control Houses for Chemical Manufacturing Plants
4.IPS
5.ASCE Iranian Petroleum Standard: Appendix-IC
Additional Requirements For Blast Resistant Buildings And Structures
Manual of Engineering Practice No.42
Design of Structures to Resist Nuclear Weapons Effects
6.NIOEC SP NIOEC Specification for Civil Design Criteria
Design of Structures to Resist Nuclear Weapons Effects
7.Soil Investigation Report for Offsite Area By Zamiran Consulting Engineers Co.
8.Civil and Structural Design Criteria, Document No. RP-SP2021-ON-CV-999-1782-0001
9. Consequence Analysis, Document No. NC-SP2021-ON-SA-999-1900-0001
MATERIAL STRENGTH
Concrete compressive strength at 28 days (Cylinder) f'c = 300 kg/cm2 (30 N/mm2)
Reinforcing bar yield strength (AIII) fy = 4,000 kg/cm2 (400 N/mm2)
Structural System
- X (longitudinal) direction: Special Moment Resisting Frame
- Y (transverse) direction: Special Moment Resisting Frame
- Roof: Concrete Slab
Geometry & dimensions
Geometry & dimensions including elevations, frame spans etc. are shown in the relevant Architectural Drawing "DW-SP2021-ON-BU-176-2051-0001".
Loading
Dead Loads:
Roof Weight
MOSAIC (kg/m2)= 2400*0.025= 60.0
SAND & CEMENT MORTAR (kg/m2)= 2100*0.025= 52.5
ASPHALT(kg/m2)= 2200*0.020= 44
WATER PROOF MEMBERANE (kg/m2)= 15
LIGHT CONCRETE (kg/m2)= 2400*0.10= 240
TOTAL(kg/m2)= 415.5
1st. Floor Weight
LIGHT CONCRETE (kg/m2)= 2400*0.05= 120
TOTAL(kg/m2)= 120
Live Load:
Floor Live Load:
PL= 750 kg/m2
Roof Live Load:
PL= 150 kg/m2 ref. 2 (TABLE 16-N)
Seismic Loads:
Design for seismic loads, including equations and values for force coefficients shall be in accordance with ASCE7-05/IBC 2006.
The total design base shear in a given direction shall be determined from the following formula:
V=Cs*W (equation 12.8-1, ASCE-05)
Where;
Cs=the seismic response coefficient determined in accordance with Section 12.8.1.1 of ASCE7-05.
W=the effective seismic weight (Section 12.7.2, ASCE7-05)
Effective seismic weight is considered by two terms in this project: 1.0 Dead + 0.25Live
Calculation of Seismic Response Coefficient:
"C" _"s" "=" "S" _"DS" /("R" /"I" )
The value of Cs computed in accordance with Eq.12.8-2 need not exceed the following:
"C" _"s" "=" "S" _"D1" /("T(" "R" /"I" ")" ) for T≤ TL (12.8-3, ASCE7-05)
"C" _"s" "=" ("S" _"D1" "T" _"L" )/("T" ^"2" "(" "R" /"I" ")" ) for T > TL (12.8-4, ASCE7-05)
Cs shall not be less than
Cs=0.01 (12.8-5, ASCE7-05)
In addition, for structures located where S1 is equal to or greater than 0.6g, Cs shall not be less than
C_s=(0.5S_1)/(R/I) (12.8-6, ASCE7-05)
Where;
SDS=the design spectral response acceleration parameter at short period range as determined from Section 11.4.4, ASCE7-05. SDS=1.0
SD1=the design spectral response acceleration parameter at 1 s period range as determined from Section 11.4.4, ASCE7-05. SD1= 0.56
SS and S1=mapped acceleration parameter Ss and S1 shall be determined from the 0.2 and 1.0 Sec. spectral response accelerations. SS= 1.5, S1= 0.6462
R=the response modification factor in Table 12.2-1, ASCE7-05. R= 5.5
Note: although the response modification factor is chosen for ordinary reinforced concrete shear walls, all special moment frame criteria satisfied.
I=the occupancy importance factor determined in accordance with Section 11.5.1, ASCE7-05. I=1.25
Fa=site coefficient (mapped maximum considered earthquake spectral response acceleration parameter at short period according to Table 11.4-1, ASCE7-05). Fa= 1.0
Fv=site coefficient (mapped maximum considered earthquake spectral response acceleration parameter at 1 Sec period according to Table 11.4-2, ASCE7-05). Fv= 1.3
Ω= overstrength factor as defined in Tables 12.2-1, 5.4-1 and 15.3-1, ASCE7-05. Ω= 2.5
Site Class: C
Site class type shall be assigned in accordance with the definitions provided in Table 20.3-1 and Chapter 20, ASCE7-05.
Blast Loads:
Blast Pressures and Durations
According to ref. 9, blast pressure shall be calculated by following table:
25 m from the edge : 275 mbar
30 m from the edge : 245 mbar
35 m from the edge : 220 mbar
40 m from the edge : 200 mbar
Also in accordance with ref. 3, rectangular box-shaped buildings shall be designed for blast pressures as follows; the choice depends on the type of anticipated explosion:
Either (High pressure, short duration, triangular shock loading)
a) Each wall shall be designed for a peak reflected pressure (Pr) of 172 kPa and duration of 20 milliseconds.
b) Flat roof slabs and beams shall be designed for an incident overpressure (Po) of 69 kPa and duration of 20 milliseconds.
c) The main structural framing shall be designed for blast pressure on any one wall in accordance with subparagraph a. above together with roof loading as follows:
Or (Low pressure, Long duration, triangular loading)
a) In the event of a peak incident overpressure of 20 kPa and a positive duration of 100 milliseconds, each wall should be designed for a peak reflected pressure of 30 kpa and a positive duration of 100 milliseconds.
b) Flat roof slabs should be designed for an incident overpressure (Po) of 20 kPa and a positive duration of 20 milliseconds.
c) Where side wall panels are designed to resist horizontal shear reactions from walls subjected to loading as in subparagraph a, they should be designed to resist in addition the same pressure as the roof slabs in b.
STATIC LOAD EQUIVALENT OF BLAST PRESSURES AND DURATIONS
Required dynamic resistance, R*, in the direction of blast loads shall be calculated in accordance with the procedure outlined in ASCE Manual 42, or an equivalent acceptable method which takes into account dynamic response. Required dynamic resistance may be calculated in accordance with the following general formula:
R=P/(√α/(π.τ)+ατ/(2δ_m (τ+0.7))) Ref. 3
* R. shall not be less than (13.8 kPa) and need not be greater than 86 kPa.
R: is required dynamic resistance of structural element expressed as static load equivalent of blast pressure and duration, kPa.
P: is peak blast load = Pr or Po or Pf as appropriate for the element under consideration, kPa.
α:is energy absorption factor = 2δm -1.
δm: is maximum displacement factor = Xm/Xy.
τ :is duration factor = t0/T.
Xm: is maximum dynamic displacement, mm.
Xy: is effective displacement at initial yield, mm.
t0: is duration of blast load, milliseconds.
T: is fundamental period of vibration of structure or element under consideration, milliseconds.
Required dynamic resistance (R) to blast loads shall be combined with other loads as follows:
U = D + L + R
U: is total required resistance
D: is dead loads, or their related internal moments and forces.
L: is live loads, or their related internal moments and forces.
Calculation of Blast Load
To calculate Blast loads for Substation 01/ITR 3&4, loads given in the consequence analysis applied on the structure.
Blast load on walls= 27.5 kPa
Blast load on roof and side walls= 13.8 kPa
SOIL CONDITION
Allowable Soil Bearing Capacity:
According to Ref. 7 for rectangular footing and L/B=10 qall=3.0 kg/cm2

MODELING
All structural elements have been modeled in SAP 2000, ver. 14.1.0.
3D view – Switch Gear
3D view – ITR
Foundation – Switch Gear
1st floor plan – Switch Gear
Roof plan – Switch Gear
Foundation – ITR
Roof plan – ITR
Input data
Material Property Data
Load Pattern Definitions
Load Combinations
Loading On Structure
Dead Load
According to sec. 6.1, dead load for 1st floor and roof has been considered as 120 kg/m2 and 415.5 kg/m2 respectively.
Dead load on 1st floor – Switch Gear
Dead load on roof – Switch Gear
Dead load on roof – ITR
Live Load
According to sec. 6.2, live load for 1st floor and roof has been considered as 750 kg/m2 and 150 kg/m2 respectively.
Live load on 1st floor – Switch Gear
Live load on roof – Switch Gear
Live load on roof – ITR
Seismic Load
Seismic parameters in X, Y direction
Switch Gear:
ITR:
STRUCTURAL Design Data
Column Design
- Column design was performed according to chapter 21 of ACI: special provisions for seismic design.
- Columns design was performed according to the Special moment frame members subjected to bending and axial load.
Longitudinal Reinforcement
Asmin= 0.01 Ag
Asmax= 0.06 Ag
Where Ag= gross area of concrete section, mm2
Column 700×700:
Asmin= 700*700*0.01= 4900 mm2
Asmax= 700*700*0.06= 29400 mm2
Asused: 16 Φ 20 = 16*314.16 = 5026 mm2 OK
Column 600×800:
Asmin= 600*800*0.01= 4800 mm2
Asmax= 600*800*0.06= 28800 mm2
Asused: 20 Φ 28 = 16*314.16 = 12315 mm2 OK
Transverse Reinforcement
A_(sh min1)=0.3(sb_c f_c/f_y )[(A_g/A_ch )-1]
A_(sh min2)=0.09sb_c f_c/f_y
Where:
s: center-to-center spacing of transverse reinforcement, mm
bc: cross-sectional dimension of column core measured center-to-center of outer legs of the transverse reinforcement comprising area Ash, mm
Ach: cross-sectional area of a structural member measured out-to-out of transverse reinforcement, mm2
Column 700×700:
A_(sh min1)=0.3(100*615 300/4000)[((700*700)/(615*615))-1]=407 〖mm〗^2
A_(sh min2)=0.09*100*615 300/4000=414 〖mm〗^2
Ash used= 2Φ14+2Φ12= 2*153.94+2*113.1= 534 mm2 OK
Column 600×800:
A_(sh min1)=0.3(100*515 300/4000)[((600*800)/(515*701))-1]=382 〖mm〗^2
A_(sh min2)=0.09*100*515 300/4000=348 〖mm〗^2
Ash used= 2Φ14+2Φ12= 2*153.94+2*113.1= 534 mm2 OK
Design data for 700×700 column (sample)
Design data for 600×800 column (sample)
Column ratios –Switch Gear - row A
Column ratios –Switch Gear - row B
Column ratios – Switch Gear - row D
Column ratios –ITR - row A
Column ratios –ITR - row C
Column ratios –ITR - row D
Column ratios –ITR - row G
Beam Design
beams shall be designed in accordance with special provisions for seismic design, ACI 318: Chapter 21
Minimum Reinforcing:
AS,min= (0.25√(f_c ))/f_y b_w d
AS,min= (1.4b_w d)/f_y
As min= 0.0035 bwd
Maximum Reinforcing: The reinforcement ratio ρ, shall not exceed 0.025(top & bottom)
Design data for 350×500 beam (sample)
Design data for 800×400 beam (sample)
Design data for 500×600 beam(sample)
Design data for 500×900 beam(sample)
Design data for 500×500 beam(sample)
Longitudinal reinforcement – Switch Gear - 1st floor
Longitudinal reinforcement – Switch Gear – roof
Longitudinal reinforcement – ITR – roof
Slab Design
It is notable that SAP 2000 ver. 14.1.0 is capable of calculating the shell reinforcement.
Following figures show the results of slab design.
X Direction
Following figures show that required reinforcement is Φ16@200 + Φ12@200 (around slab) in top & bottom.
Envelope positive moment – X direction – Switch Gear – 1st floor (ton-m)
Envelope negative moment – X direction – Switch Gear – 1st floor (ton-m)
Envelope positive moment - X direction – Switch Gear - roof (ton-m)
Envelope negative moment - X direction – Switch Gear - roof (ton-m)
Envelope positive moment - X direction – ITR - roof (ton-m)
Envelope negative - X direction – ITR – roof (ton-m)
Y Direction
Following figures show the required reinforcement is Φ16@200 + Φ12@200 (around slab) top & bottom.
Envelope positive moment – Y direction – Switch Gear – 1st floor (ton-m)
Envelope negative moment – Y direction – Switch Gear – 1st floor (ton-m)
Envelope positive moment - Y direction – Switch Gear - roof (ton-m)
Envelope negative moment - Y direction – Switch Gear - roof (ton-m)
Envelope positive moment - Y direction – ITR - roof (ton-m)
Envelope negative moment - Y direction – ITR - roof (ton-m)
Wall Design
Longitudinal Reinforcement
Following figures show the required reinforcement is Φ16@200 inside & outside.
Envelope longitudinal moment – inside bar – Switch Gear (ton-m)
Envelope longitudinal moment – outside bar – Switch Gear (ton-m)
Envelope longitudinal moment – inside bar – ITR (ton-m)
Envelope longitudinal moment – outside bar – ITR (ton-m)
Transverse Reinforcement
Following figures show the required reinforcement is Φ16@200 inside & outside + Φ12@200 if it is needed.
Envelope transverse moment – inside bar – Switch Gear (ton-m)
Envelope transverse moment – outside bar – Switch Gear (ton-m)
Envelope transvers moment –inside bar – ITR (ton-m)
Envelope transvers moment –outside bar – ITR (ton-m)
It is notable that some extra reinforcement is for stress concentration in corners and also there is a typical reinforcement around openings, has been shown in the drawings.

Foundation Design
Foundation Properties
Material: concrete
Thickness: 80 cm
According to ref. # 7, allowable soil pressure for strip foundation is 3 kg/m2 so soil stiffness calculated as follows:
k=q_all/δ_all =3/2.5=1.2 kg/〖cm〗^3
Support: soil, k= 1,200,000 kg/m3
Soil has been modeled as a compression only area spring with stiffness= 1,200,000 kg/m3
Load Combination Data
Service Combinations
Design Combinations
Same as section 9.3.
Foundation Design Output
X Direction Reinforcement
Main bar - top and bottom Φ20@200
Add bar – if it is required Φ16@200 or Φ20@200
Following pictures and attached drawings shows the reinforcement in details.
Envelope positive moment - X direction – Switch Gear (ton-m)
Envelope negative moment - X direction – Switch Gear (ton-m)
Envelope positive moment - X direction – ITR (ton-m)
Envelope negative moment - X direction – ITR (ton-m)
Y direction reinforcement
Main bar - top and bottom Φ20@200
Add bar – if it is required Φ16@200 or Φ20@200
Following pictures and attached drawings shows the reinforcement in details.
Envelope positive moment - Y direction – Switch Gear (ton-m)
Envelope negative moment - Y direction – Switch Gear (ton-m)
Envelope positive moment - Y direction – ITR (ton-m)
Envelope negative moment - Y direction – ITR (ton-m)
Soil Pressure
Following figures shows the maximum settlement in foundation.
Deformed shape of foundation under (Soil\D+L+EQY) – ITR (cm)
max settlement= 0.636 cm
max soil pressure= 1.2*0.636=0.763 kg/cm2 < 3.0 (qall) OK
Deformed shape of foundation under (Soil\D+L-EQY) – Switch Gear (cm)
max settlement= 1.144 cm
max soil pressure= 1.2*1.144=1.37 kg/cm2 < 3.0 (qall) OK
sliding and overturning Control
Sliding Control:
Passive resistance of the foundation, where required in addition to friction to resist sliding, shall be at least 1.5 times the unbalanced lateral load. The unbalanced lateral load is defined as the total horizontal dynamic reaction force less the frictional resistance. ref. 3
Because of rectangular shape of the buildings, sliding in Y direction is more critical. So, we have:
Switch Gear:
Soil Pressure Force={1/2 γ.h^2 }.K_p={1/2*1.8(3.1+0.8)^2 }*3=41.1 ton/m
Soil Passive Force=63*41.1=2589.3 ton length of the building in X direction=63 m
W_1=Structural Weight=4423 ton
W_2=Weight of Blast Pressure on Roof=1.41*(15.6*63)=1385.7 ton
W_tot=W_1+W_2=4423+1385.7=5808.7 ton
Friction Force=f=μ.W=0.3*5808.7=1742.6 ton
Total Active Force=R=2.8*(6.6*63)=1164.24 ton
Total Passive Force=2589.3+1742.6=4331.9 ton
"F" _"passive" /"F" _"active" "=" 4331.9/1164.24 "=3.72" > 1.5 OK
ITR:
Soil Pressure Force={1/2 γ.h^2 }.K_p={1/2*1.8(0.8)^2 }*3=1.73 ton/m
Soil Passive Force=33.9*1.73=58.65 ton length of the building in X direction=33.9 m
W_1=Structural Weight=2485.5 ton
W_2=Weight of Blast Pressure on Roof=1.41*(33.9*21.9)=1046.8 ton
W_tot=W_1+W_2=2485.5+1046.8=3532.3 ton
Friction Force=f=μ.W=0.3*3532.3=1059.7 ton
Total Active Force=R=2.8*(6.6*33.9)=626.5 ton
Total Passive Force=58.65+1059.7=1118.35 ton
"F" _"passive" /"F" _"active" "=" 1118.35/626.5 "=1.79" > 1.5 OK
Overturning Control:
The foundation shall be designed so that the safety factor against overturning due to the unbalanced lateral dynamic forces not to be less than 1.2. (live loads ignored) ref. 3
Because of rectangular shape of the buildings, sliding in Y direction is more critical. So, we have:
Switch Gear:
F_passive=Wtot *(15.6/2)=45307.86 ton.m
F_active=R{6.6/2+4.2}=8731.8 ton.m
F_passive/F_active =45307.86/8731.8=5.19>1.2 OK
ITR:
F_passive=Wtot*(21.9/2)=38678.7 ton.m
F_active=R(6.6/2+1.8)=3195.15 ton.m
F_passive/F_active =38678.7/(3195.15 )=12.1>1.2 OK

1 2 3 4 5 6
ارسال نظر

جهت ثبت نظر ابتدا وارد سایت شوید.