
BioMed CentralMolecular Neurodegeneration

ss
Open AcceReview
Alzheimer's disease: synaptic dysfunction and Aβ
Ganesh M Shankar*1 and Dominic M Walsh*2

Address: 1Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA and 2Laboratory for 
Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, 
Republic of Ireland

Email: Ganesh M Shankar* - gshankar1@partners.org; Dominic M Walsh - dominic.walsh@ucd.ie

* Corresponding author    

Abstract
Synapse loss is an early and invariant feature of Alzheimer's disease (AD) and there is a strong
correlation between the extent of synapse loss and the severity of dementia. Accordingly, it has
been proposed that synapse loss underlies the memory impairment evident in the early phase of
AD and that since plasticity is important for neuronal viability, persistent disruption of plasticity
may account for the frank cell loss typical of later phases of the disease. Extensive multi-disciplinary
research has implicated the amyloid β-protein (Aβ) in the aetiology of AD and here we review the
evidence that non-fibrillar soluble forms of Aβ are mediators of synaptic compromise. We also
discuss the possible mechanisms of Aβ synaptotoxicity and potential targets for therapeutic
intervention.

Introduction
Alzheimer's disease (AD) is an irreversible, progressive
brain disorder that slowly destroys memory and cognitive
skills. It is the most common human dementia and as
such confers a huge emotional and economic burden on
patients, caregivers and society [1]. Age is the most signif-
icant risk factor, with the chance for developing AD dou-
bling every five years after 65 [2,3]. However, the disease
can also strike in mid-life and so-called early-onset AD
(EOAD) is designated as dementia developing before 65
years old. Fortunately EOAD is rare with an estimated
incidence of 4.2 per 100,000 persons in the 45-64 year age
group [4]. The cognitive and pathological changes evident
in EOAD and late onset AD (LOAD) are highly similar
with the former apparently an accelerated form of the
more common LOAD. Because many EOAD cases have a
strong Mendelian inheritance pattern they have proved
instructive in identifying key gene products involved in
the disease process. Specifically, autosomal dominant

mutations identified in familial AD all appear to converge
on altering the processing of the amyloid precursor pro-
tein (APP) [5].

The precise onset of clinical AD is difficult to discern but
is often manifested as subtle and intermittent deficits in
episodic memory. After many months of gradually pro-
gressive impairment of first declarative and then also non-
declarative memory, other cognitive symptoms appear
and slowly advance. Over a further period of years a pro-
found dementia develops that affects multiple cognitive
and behavioral spheres [6]. Pathologically, the Alzheimer
brain is characterized by atrophy and microscopically
there are decreases in the numbers of neuronal cell bodies
in the limbic and association cortices and in certain sub-
cortical nuclei [7-9] and numerous amyloid plaques and
neurofibrillary tangles litter the cerebrum [10-12]. Many
studies have examined the relationship between cognitive
impairment and plaque and tangle counts and while, in
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general, the number of neurofibrillary tangles correlates
better with severity of dementia than the number of amy-
loid plaques, the most robust correlation in the staging of
dementia and early AD is the magnitude of synapse loss
[13-15].

Synaptic impairment is likely to be the basis of memory 
loss in AD
The notion that dementia could result from some sort of
synaptic degeneration has been with us for over 100 years
and was eloquently expressed by Santiago Ramon y Cajal
when he suggested that "dementia could result when syn-
apses between neurons are weakened as a result of a more
or less pathological condition, that is, when processes
atrophy and no longer form contacts, when cortical mne-
monic or association areas suffer partial disorganization"
[16]. Quantification using electron microscopy or immu-
nohistochemical staining for synaptic markers has docu-
mented significant decreases in synaptic density in the
association cortices and hippocampus of AD brain
[13,14,17-21] and biochemical and immunohistochemi-
cal analysis has revealed a similar loss of both pre-synaptic
and post-synaptic components [22]. Moreover, the initial
decrease in synapse number and density seems dispropor-
tionate to the loss of neuronal cell bodies [13,18,23], sug-
gesting that pruning of synaptic endings may precede
frank neuronal loss. Indeed, synaptic degeneration
appears to be an early event in pathogenesis with synapse
loss evident in patients with early AD and mild cognitive
impairment (MCI) [14,15,24].

An important feature of the memory impairment associ-
ated with AD and MCI is the selective vulnerability of the
ability to consolidate new memories; whereas, the capac-
ity to recall information from the distant past is preserved.
This selective impairment of recent memory together with
the rapid decay of newly acquired information is reminis-
cent of the deficits seen in the temporal lobe amnesias and
in patients with bilateral hippocampal damage [25,26].
Analogously, extensive experimentation has demon-
strated that the memory deficits observed in aged rodents
are highly similar to those in animals with bilateral lesion-
ing of the hippocampus and that age-dependent memory
impairment is associated with decreased hippocampal
synaptic plasticity. Specifically, estimation of the number
of axospinous synapses per neuron in the molecular layer
of the dentate gyrus revealed that aged rats with impaired
spatial memory had fewer simple and perforated synapses
than did memory-intact aged or young rats [27-30]. More-
over, old animals with good spatial memory exhibited
similar levels of synaptic enhancement as young animals,
whereas memory-impaired old rats had impaired
enhancement [31]. The prominent pathology evident in
the perforant pathway in the early stages of AD [32] and
the documented importance of the hippocampus in

encoding the memory of recent events [33-35] argue
strongly that disconnection of the hippocampal forma-
tion is likely to underlie the progressive memory distur-
bances in AD.

Irrespective of educational or social status few humans
will escape the age-dependent memory impairment that is
a frequent companion of old age, yet the majority of eld-
erly will not suffer the ignominy of AD. So, what distin-
guishes MCI and the early periods of AD from non-
pathogenic age-dependent memory loss? Clearly the spec-
trum from healthy ageing to AD is a very broad one,
though not necessarily a continuum, with age-dependent
deficits often having a strongly frontal involvement
[36,37]. However, it has been suggested that AD is an
extreme and accelerated version of age-related memory
loss [38], but that once this accelerated process is initiated
it develops a pathogenic profile not seen in normal age-
ing. Here we propose that the amyloid β-protein (Aβ) is
the molecular accelerant that hastens age-related memory
decline and triggers AD pathogenesis.

Measures of synaptic plasticity provide a useful read-out 
to assess AD-related pathophysiology
Hebbs postulate describes a basic mechanism for synaptic
plasticity wherein an increase in synaptic efficacy arises
from the pre-synaptic cell's repeated and persistent stimu-
lation of the post-synaptic cell [39]. Accordingly, long
term potentiation (LTP) and long term depression (LTD)
are widely used as models of learning and memory and
such processes are believed to play important roles in neu-
ral circuits of the brain, with effects lasting for hours, days,
or longer [34,35,40,41]. Similar to LTP, the induction of
hippocampal LTD requires activation of NMDA receptors
and/or metabotropic glutamate receptors (mGluR),
depending on the experimental conditions [42,43]. Mech-
anistically, the balance between synapse potentiation ver-
sus depression is thought to depend on alterations in
cytosolic Ca2+ concentration and the differential activa-
tion of certain kinases and phosphatases, such as calcium/
calmodulin dependent kinase II (CamKII), calcineurin,
and cyclic AMP response element binding protein (CREB)
[42,43]. Ultimately, this balance in intraneuronal signal-
ling appears to regulate the stability of the post-synaptic
density [44] and the post-synaptic content of AMPA recep-
tors [45,46]. Together, these structural changes dynami-
cally modulate the magnitude of neurotransmission at the
synaptic level.

Anatomical studies in normal rodents suggest that the
induction of LTP is associated with spine formation and
increased spine volume, whereas the induction of LTD
results in decreased spine volume and spine elimination
[47-49]. Similarly, processing of information for long-
term storage requires specific patterns of activity that lead
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to modification of synapse structure and eventually to
change in neural connectivity [50]. Increases in synapse
density and stabilization of dendritic spines in the mouse
barrel cortex have been described following whisker stim-
ulation, providing insights into structural changes in syn-
apses associated with learning and memory [51]. It is also
well-established that synapses throughout the CNS inte-
grate synaptic activity to maintain and regulate receptors
and channels at synapses [40]. Without regulation of syn-
apse activity, maintenance of synaptic proteins is lost,
leading to excitotoxicity and degradation of stored mem-
ory [40]. Consequently, we believe that studies of synaptic
plasticity employing both electrophysiological and mor-
phological measures are essential for developing an
understanding of how memory mechanisms are disrupted
in disease.

Aβ exists in many different assembly forms
The molecular pathways leading to synapse loss and dys-
function in AD are not well understood, but substantial
data indicate that Aβ may be responsible for these affects
[52-54]. Over the past 17 years researchers have built up a
detailed picture of the natural economy of brain Aβ. The
steady state level of Aβ is controlled by its production,
degradation and clearance [55,56] and it is proposed that
in disease a defect leading to over-production or
decreased clearance causes an accumulation of Aβ. This in
turn triggers a pathogenic cascade culminating in the cog-
nitive deficits that characterize AD [57]. Like several other
disease-associated proteins, Aβ has the ability to self-asso-
ciate [58], and can form an array of different assembly
forms ranging from dimers all the way to aggregates of
fibrils [59]. Initially, it was assumed that toxicity was
mediated by fibrillar Aβ similar to that present in amyloid
plaques. However, the quantity and temporal progression
of amyloid plaques do not correlate well with the clinical
progression of the disease [20,60,61], thus raising the sim-
ple question: if Aβ causes AD, then why doesn't the
amount of Aβ in the form of amyloid plaques relate to the
severity of dementia?

Recent studies suggest soluble non-fibrillar Aβ assemblies,
which go by names such as ADDLs, oligomers, paranuclei,
and protofibrils (Table 1) [62-66] may provide the miss-
ing link, but as yet the specific form(s) of Aβ which causes
injury to neurons in vivo has not been identified. Perhaps
the most compelling argument in support of a role for
non-fibrillar soluble Aβ comes from a common sense
inspection of available data. Extensive multi-disciplinary
research provides incontrovertible evidence that Aβ plays
an important role in AD [57]. This together with the find-
ings that monomer is innocuous and that amyloid
plaques alone cannot account for disease has lead many
to conclude, if it isn't fibrillar Aβ (akin to that found in
amyloid plaques) and it isn't Aβ monomer then it must be

some other form of Aβ. Similarly, it seems reasonable that
the synaptic and neuronal compromise seen at sites dis-
tant from plaques is mediated by an Aβ species that can
readily diffuse and access the space in and surrounding
the synaptic cleft.

In recent years biochemical analysis of AD brain have
revealed a robust correlation between soluble Aβ levels
and the extent of synaptic loss and severity of cognitive
impairment [67-70]. But what exactly constitutes soluble
Aβ is as yet not well-understood. The term soluble Aβ is an
operational definition, embracing all forms of Aβ that
remain in aqueous solution following high speed centrif-
ugation of brain extracts [68-71]. Moreover, the origin of
soluble Aβ is ambiguous. Extraction of Aβ from brain
invariably involves homogenization and consequent cell
fracture thus the extracted pool will include truly soluble
extracellular Aβ, extracellular Aβ loosely associated or in
equilibrium with plaques and a portion of intracellular
Aβ. To date, most studies of soluble cerebral Aβ have
employed ELISA methods that cannot disclose the aggre-
gation state of the species detected and for the most part
appear to preferentially detect Aβ monomer [72-76].
Although the detection methods used provide little infor-
mation about the assembly state of Aβ the fact that they
are not sedimented by ultracentrifugation indicates that
they are not mature amyloid fibrils. While a huge amount
of data has been gathered concerning the primary
sequence of cerebral Aβ only limited attempts have been
made to assess the assembly forms of Aβ present in
human brain. Using aqueous buffer free of detergents or
chaotropes, Kuo and colleagues [71] isolated a range of
non-fibrillar forms of Aβ from both AD and control brain.
Both sample populations contained a continuous distri-
bution of Aβ species from monomer up to oligomers in
excess of 100 kDa, with the major contribution coming
from low-n oligomers ranging from dimers to octamers.
In agreement with these results we have found that aque-
ous extracts of AD brain contain a distribution of Aβ spe-
cies which migrate on non-denaturing size exclusion
chromatography (SEC) [77] and glycerol velocity gradient
centrifugation (GVGC) over a broad molecular weight
range (J. McDonald and DMW unpublished). However,
given that Aβ can also bind to other proteins, the molecu-
lar weight distribution determined by ultrafiltration, SEC
and GVGC cannot be definitively ascribed to homo-oli-
gomers of Aβ.

In a complementary study, McLean and colleagues
extracted samples of frontal cortex and putamen in PBS
and centrifuged these at 175,000 g for 30 min [68]. West-
ern blot analysis of the supernates from AD brain revealed
the presence of variable proportions of monomeric,
dimeric and trimeric Aβ species [68]. Such SDS-stable
low-n oligomers have also been detected in human CSF
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by LC-MS [78] and appear to represent highly stable non-
covalently associated dimers of Aβ1-40 and trimers of
either Aβ6-42 or Aβ1-35. Higher molecular weight SDS-sta-
ble assemblies have not been reported in human CSF or
soluble extracts of human brain, but whether the dimers
and trimers detected represent true low-n oligomers or are
breakdown products of larger SDS-unstable assemblies is
unclear. Moreover, the presence of SDS-stable dimers and
trimers in the soluble fraction of human brain and in
extracts of amyloid plaques [68,74,75,79] suggest that in
addition to being the earliest mediators of neuronal dys-

function SDS-stable low-n oligomers of Aβ may be the
fundamental building blocks of insoluble amyloid depos-
its.

Transgenic mouse models over-expressing human APP
develop many facets of amyloid pathology [80,81] and
have been studied in an effort to identify toxic Aβ assem-
blies [82-87]. Particularly noteworthy evidence support-
ing soluble forms of Aβ as the principal mediators of
neuronal compromise comes from a report using PDAPP
mice in which Aβ-mediated deficits of memory were

Table 1: Water-soluble non-fibrillar Aβ assemblies

Name Physical Characteristics Biological activity

Protofibrils* β-sheet-rich, curvilinear structures of 6-8 nm in 
diameter and 5-200 nm in length [63,118]. Under 
certain circumstances canalso form annular 
structures [160].

Alter neuronal activity [108], block in vitro LTP 
[116] cause memory impairment and 
phosphorylation of tau [117].

ADDLs A mixture of monomer and heterogenous high 
molecular weight oligomers [120] some of which 
appear similar to small protofibrils [121].

Block in vitro LTP [64] and cause loss of synapses 
and [111] at higher concentrations neuronal death 
[123].

Globulomers Formed in the presence of SDS or fatty acids they 
are β-sheet-rich and by AFM appear as spheres of 
1-5 nm [161] and elute from SEC with a molecular 
weight consistent for a globular protein of ~100 
kDa.

Bind to hippocampal neurons, inhibit LTP in vitro 
[162] and block P/Q Ca2+ currents [163].

Spheroids Spherical structures of 3-20 nm diameter that co-
migrate on glycerol gradients with thyroglobulin 
(669 kDa) [65]. Similar structures have been 
immunoisolated from human brain [164].

Induce activation of GSK-3β and cell death in 
cultured neurons [65].

Disulphide cross-linked Aβ Isolated cysteine linked dimers of Aβ that lack 
significant secondary structure (O'Nuallain and 
DMW, unpublished) and behave as true dimers on 
SEC and analytical ultracentrifugation [77].

Block LTP in vitro [77] and in vivo [165] and impair 
the memory of learned behaviour (Cleary and 
DMW, unpublished).

Cell-derived SDS-stable low-n oligomers Present in medium from CHO cells expressing 
human APP and which migrate on SDS-PAGE and 
SEC with molecular weights consistent for Aβ 
dimers and trimers [95,105].

Block LTP in vitro [104] and in vivo [102] and 
impair the memory of learned behaviour [107].

Aβ56* An Aβ-immunoreactive species isolated from brains 
of APP transgenic mice in the presence of 0.01% 
NP-40 and 0.1% SDS and which migrates on SDS-
PAGE and SEC with a molecular weight comparable 
to a globular protein of 56 kDa [86].

Causes impairment of spatial memory [86].

Brain-derived SDS-stable Aβ dimer Extracted from human brain using aqueous buffer 
and remain in solution following high speed 
centrifugation. These species migrate on SDS-PAGE 
as dimers, but elute from SEC as true dimers and 
high molecular weight species [77] (McDonald et al. 
Water- and triton-X100 extracted Aβ is specific for 
Alzheimer-type dementia, submitted).

Block LTP in vitro and in vivo and impair the 
memory of learned behaviour [77].

Besides the forms of Aβ described above a significant number of other Aβ preparations have been studied, but since most of these have not been 
characterized beyond the use of denaturing electrophoresis or reactivity with certain antibodies they are not dealt with here.
* Protofibrils appear prior to detection of mature amyloid fibrils and thus are considered as pre-fibrillar assemblies.
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reversed by a single intraperitoneal injection of an anti-Aβ
antibody [88]. In these acute (< 24 hr) experiments, brain
amyloid burden was not decreased, suggesting that the
antibody was acting on soluble, diffusible species of Aβ
and that neutralization or clearing these small intermedi-
ates allowed rapid improvement in object recognition
performance.

Using another well-characterized APP transgenic mouse
model, Tg2576, Lesne and colleagues reported that in
brain extracts from Tg2576 mice ~42 kDa (nonamer) and
~56 kDa (dodecamer) Aβ species were detected at an age
that coincided with the first observed changes in spatial
memory [86]. Aβ monomer, trimer and hexamer were
seen at earlier time points and hence were not considered
to be associated with a deleterious effect on cognition.
Indeed, comparison of spatial memory and the levels of
Aβ monomer, trimer, hexamer, nonamer and dodecamer
revealed that only nonamer and dodecamer levels corre-
lated with impairment of spatial memory. Importantly,
ventricular injection of purified dodecamer into normal
pre-trained wild-type rats dramatically perturbed the
memory of learned behaviour [86,89], thus demonstrat-
ing that a soluble, brain-derived form of Aβ can directly
mediate brain dysfunction. However, it is unlikely that
nonamer and dodecamer alone are the only Aβ assem-
blies capable of altering brain function. For instance,
Kawarabayashi and colleagues reported that the appear-
ance of SDS-stable dimers present in lipid rafts also coin-
cided with impairment of spatial memory [85]. In
addition, the same Tg2576 mice demonstrate poor per-
formance in a hippocampus-dependent contextual fear
conditioning assay, decreased spine density in the dentate
gyrus, and impairment of long term potentiation (LTP) at
ages long before the first detection of Aβ dodecamer
[86,90,91]. Thus, while the appearance of dodecamers
correlate with the impairment of spatial memory in
Tg2576 mice, it does not correlate with changes in other
forms of memory, nor do dodecamer levels correlate with
changes in synaptic form and function. Indeed, very
recent data support the presence of multiple bioactive Aβ
species in APP transgenic mouse brain [92,93]. In J20 APP
transgenic mice, over-expression of neprilysin dramati-
cally reduced total Aβ levels, but did not alter dodecamer
and SDS-stable Aβ trimer levels nor did it recover spatial
reference learning and memory impairments evident in
J20 mice. In addition, changes in hippocampal Fos levels
and hyperactivity were attributed to a third unidentified
species [93]. Similarly, we found the presence of several
different Aβ assemblies in the cerebrum of J20 mice,
before, coincident with, and after the onset of detectable
synapto-dendritic compromise [94] thus it seems likely
that more than one Aβ species mediates the various syn-
aptic deficits evident in APP transgenic mice.

SDS-stable low-n oligomers bearing some similarities to
those detected in human and mouse brain have been
detected in the conditioned medium (CM) and/or lysates
of a variety of cell lines [73,95-100]. Chinese hamster
ovarian (CHO) cells that express mutant (V717F) human
APP (referred to as 7PA2 cells) produce and secrete low
nanomolar amounts of Aβ species that migrate in dena-
turing SDS-PAGE with molecular weights consistent for
Aβ monomer, dimer and trimer [95,101]. Because of the
easy maintenance and fast growth rate of 7PA2 cells, 7PA2
CM has become the media of choice to investigate the bio-
logical activities of cell-derived SDS-stable low-n Aβ oli-
gomers. 7PA2 medium containing Aβ low-n oligomers
has a variety of plasticity and memory impairing effects. It
can block LTP in vivo [102,103] and in vitro [104,105],
reduce spine density in cultured neurons [100,106] and
decrease the density of synapses in vivo (Freir et al. Cell-
derived Aβ oligomers inhibit synapse remodelling neces-
sary for memory consolidation, submitted). When
injected into the lateral ventricle 7PA2 CM or oligomer-
containing fractions thereof impair performance on oper-
ant lever tasks such as the alternating lever cyclic ratio test
[89,107], disrupt working memory in rats tested in a
radial-arm maze [99] and show a time-dependent inter-
ference with consolidation of avoidance learning (Freir et
al. Cell-derived Aβ oligomers inhibit synapse remodelling
necessary for memory consolidation, submitted).

Importantly, biologically active non-fibrillar, non-mono-
meric assemblies of synthetic Aβ have also been identified
and such species of Aβ have been shown to exert disease
relevant toxicities [63,64,94,100,108-112]. Preparations
containing toxicity mediating forms of Aβ are frequently
referred to as oligomers, however, by and large, the assem-
bly state of these have been poorly defined and it is very
difficult to compare Aβ preparations used in different
studies. Here we will review some of the most commonly
encountered and better characterized Aβ preparations.
Protofibrils (PFs) have been characterized using a combi-
nation of size exclusion chromatography, quasi-elastic
light scattering, electron microscopy (EM) and atomic
force microscopy (AFM) and derive their name due to the
fact that these structures share some physical similarities
with amyloid fibrils but appear prior to the detection of
fibrils [62,63]. In solution PFs are highly polydisperse and
by EM or AFM range in size from spheres ~5 nm in diam-
eter to curvilinear structures up to 200 nm in length. Their
formation is dependent on concentration, pH and ionic
strength [113] and they appear to behave as true fibril
intermediates in that they can both form fibrils and disso-
ciate to low molecular weight species of Aβ [63,113].
Annular PFs with external and internal diameters of ~8
and ~2 nm have been detected and seem to be particularly
well-populated in preparations of Aβ peptide bearing the
Arctic mutation (E22G) [114]. Under conditions where
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there appeared to be little conversion of PFs to fibrils,
addition of PFs to rat cortical cultures caused a time-
dependent decrease in neuronal viability as measured by
LDH release or an increase in Hoechst staining [108,115].
Moreover, PFs caused a dose-dependent inhibition of
MTT reduction by primary neuronal cultures that was
detectable after only 2 hours of incubation with cells [63],
an almost immediate enhancement of electrical activity of
neurons [108] and a robust block of LTP [116]. It has also
been demonstrated that that certain naturally occurring
lipids can cause disassembly of fibrils leading to the for-
mation of protofibrils and that when these so-called
"backward PFs" are injected into the ventricle can spread
rapidly throughout the brain and alter learned behaviour
[117].

Aβ-derived diffusible ligands (ADDLs) which are some-
times simply referred to as Aβ oligomers were first
detected and studied by Mary Lambert, Bill Klein and col-
leagues [64]. Until relatively recently there was little phys-
ical definition of ADDLs. The original report simply
documented the detection by AFM of imperfect spheres
~5-6 nm in diameter which appeared highly similar to the
smallest PF species detected by AFM and EM
[62,118,119]. In contrast solution state analysis of ADDLs
using SEC, light scattering and analytical ultracentrifuga-
tion indicate that the classic "Klein ADDL preparation"
contain a mixture of different sized species and include Aβ
assemblies which are not well-detected by EM or AFM
[120,121]. ADDL preparations contain a huge array of
species ranging from monomer to large assemblies with
molecular weights approaching a million Daltons [120],
however, the relative abundance of the high molecular
weight species and monomer appear to vary depending
on the precise incubation conditions. For instance, Hepler
and colleagues found monomer to be the major species in
their ADDL preparation [120], whereas Lauren and col-
leagues found the high molecular weight species to pre-
dominant [121].

ADDLs have been shown to cause neuronal death, block
LTP [64,109] and inhibit reduction of MTT by neural cell
lines [109,122,123]. When incubated with organotypic
mouse brain slice cultures for a 24 h period low concen-
trations of ADDLs (5 nM) caused ~20% loss in cell
number whereas at higher concentrations (500 nM) and
brief incubation periods (45-60 minutes) cell loss was not
evident but a near complete abrogation of LTP was
observed [64,109]. Consistent with their synaptotoxic
activity, ADDLs have been shown to avidly bind and dec-
orate dendritic arbors of certain cultured neurons
[121,124,125] and to mediate dendritic spine loss [111].
The in vivo relevance of ADDLs is suggested by the finding
that antibodies (M93 and M94) to synthetic ADDLs pre-
vented Aβ-induced toxicity and that both synthetic Aβ1-42

and some forms of brain-derived Aβ bound specifically to
the surface of cultured hippocampal neurons [125,126].
These antibodies only weakly reacted with monomer and
preferentially recognized assembled forms of Aβ [126],
and dot blot analysis of soluble extracts from human AD
brain revealed a dramatic increase in M93 immunoreac-
tivity compared to control brain [125]. Similarly, soluble
brain extracts from old Tg2576 mice displayed significant
anti-ADDL immunoreactivity [127]. However, given the
highly heterogeneous nature of the synthetic ADDL
immunogen used to generate M93 it is unclear exactly
what species of Aβ this antibody recognizes.

Besides the use of ADDLs and PFs a number of studies
have employed a variety of other non-fibrillar prepara-
tions and found these also to be toxic to cultured neurons
[65,128-132]. For example, when Deshpande and col-
leagues examined the effect of 3 distinct assembly forms
of synthetic Aβ, they found that all preparations tested
were toxic to primary human cortical neurons, but that
the extent and mechanism of toxicity differed [133]. The
forms of Aβ investigated were, high molecular weight oli-
gomers (formed as described by [134]) ADDLs and fibril-
lar Aβ. Low micromolar concentrations (5 μM) of high
molecular weight synthetic oligomers caused widespread
death within 24 h, whereas similar concentrations of
ADDLs took 5-times longer to cause cell loss, and 4-fold
higher concentrations of fibrillar Aβ took 10 days to
induce only modest cell death. Both high molecular
weight oligomers and ADDLs bound rapidly and avidly to
synaptic contacts. High molecular weight oligomers
caused activation of the mitochondrial death pathway,
but activation of this pathway also occurred when sub-
lethal levels of the same oligomers were used, suggesting
that such changes may underlie defective synaptic activity
in neurons that are still viable. In contrast, Wogulis and
colleagues found that overt neuronal loss required the
presence of both unaggregated soluble Aβ and fibrillar Aβ
[135]. The apparent conflict between this report and those
ascribing toxicity to a specific Aβ species likely results
because of the use of relatively long incubation condi-
tions. During prolonged incubation with neurons inter-
mediates have the potential to further associate and
transition to higher ordered aggregates and fibrils have the
ability to dissociate Thus such experimental formats
render it difficult to unambiguously ascribe cytopatholog-
ical activity to a discrete species. Other studies have
reported that the application of sub-lethal concentrations
of various non-fibrillar Aβ assemblies can alter neuronal
architecture, cause perturbations in axonal transport and
reduced cell surface levels of NMDA receptors
[130,131,136-139].

The role of low-n oligomers of Aβ in the range of dimer to
tetramer is supported by results from studies using pep-
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tides bearing disease-associated and design mutations. A
mutation associated with EOAD which results in the dele-
tion of glutamic acid 22 produces Aβ which in vitro exhib-
its accelerated oligomerization without fibrillation and
which potently blocks LTP [140]. In contrast, design
mutations substituting glycine for leucine within the
GxxxG repeat motif of Aβ show a greater propensity for
aggregation and decrease the abundance of mass spec-
detected dimers and trimers relative to wild type Aβ1-42.
Accordingly, such mutants exhibit reduced toxicity when
incubated with cultured neurons [141]. Using a similar
approach Harmeier and colleagues found that Aβ1-42 pep-
tides containing G33A or G29/33A substitutions formed
reduced amounts of low-n oligomers, and that the low-n
oligomers formed did not block LTP. This latter finding
indicates that aggregation size alone is not the sole deter-
minant of synaptotoxicity, but that the solution structure
of assemblies is also critical. Interestingly, in comparison
to wild type Aβ, over-expression of these peptides in dro-
sophila resulted in lower cell loss and reduced eye degen-
eration [142].

In summary, studies using synthetic Aβ peptides, Aβ-con-
taining cell culture medium, APP transgenic mouse and
human brain demonstrate that Aβ toxicity is a complex
and multifaceted phenomenon that may be induced by
multiple assembly forms of Aβ and which can result in a
variety of effects ranging from reversible changes in synap-
tic form and function all the way to frank neuronal loss.

Mechanisms of Aβ-mediated synaptic dysfunction
How Aβ mediates its effects on synaptic plasticity may
take many years to fully understand, but already we know
that it is likely to involve three different levels. The first
and most important mechanism impugns a toxic gain of
function for Aβ which results due to self-association and
attainment of new structures capable of novel interactions
that lead to impaired plasticity. The other two scenarios
predicate that Aβ has a normal physiological role. On the
one hand insufficient Aβ could lead to a loss of normal
function, whereas excess Aβ may precipitate dysfunction.

A growing body of literature supports a physiological role
for Aβ in normal synapse function. For instance, in orga-
notypic hippocampal slices, β-secretase activity is
increased by synaptic activity and the resulting Aβ pep-
tides depress excitatory transmission through AMPA and
NMDA receptors, suggesting a role for Aβ in homeostatic
plasticity [143]. Indeed in APP transgenic mouse brain
there is a strong positive correlation between synaptic
activity and the concentration of Aβ in the interstitial fluid
[56] and in humans cerebral Aβ concentration increases as
neuronal function and mental status recover in patients
with traumatic brain injury [144]. Aβ may also have a role
in regulating well-described forms of synaptic plasticity.

Specifically, exogenous application of Aβ partially
occludes mGluR-dependent LTD, suggesting shared path-
ways that elicit and modulate, this form of endogenous
synaptic plasticity [145]. It has also been suggested that
Aβ is important for neuronal survival [146] and it has
been shown that picomolar concentrations of human Aβ1-

42 increase the magnitude of LTP generated in hippocam-
pus by recruiting an α7-acetylcholine receptors pathway
[147]. While a physiologic role for Aβ can be surmised
from such studies, the Aβ assembly form responsible for
these effects is not known. However, it seems likely that
monomeric Aβ would mediate these effects, not least
since monomer would be the predominant form of Aβ
present in freshly reconstituted synthetic peptide or corti-
cal Aβ. Consequently, pathologic effects on synapse phys-
iology may not only arise from the appearance of higher
order Aβ assemblies, which assume a toxic gain of func-
tion, but also rising level of monomeric Aβ. Thus
increased concentrations of Aβ could lead to synaptic dys-
regulation mediate by abnormally high levels of mono-
mer and the formation of toxic oligomers. For instance it
seems plausible that the increase in non-convulsive sei-
zures observed in APP transgenic mice result due to an Aβ-
dependent imbalance of excitatory and inhibitory activity
[148]. In this scenario Aβ promotes neuronal over-excita-
bility, which results in GABAergic sprouting of inhibitory
synapses as a compensatory mechanism. Similarly, using
multiphoton imaging of intraneuronal calcium fluctua-
tions high focal levels of Aβ were shown to increase heter-
ogeneity in the excitability of neurons within 60 μm of
amyloid plaques [149]. Moreover, dendritic spine loss
observed within 20 μm of amyloid plaques in the Tg2576
APP transgenic mouse provides a structural correlate to
the physiologic findings [150].

Interactions between Aβ and various receptors have been
shown through biochemical and pharmacologic tech-
niques. Given the profound loss of cholinergic transmis-
sion in AD nicotinic and muscarinic acetylcholine
receptors have drawn considerable attention. Synthetic Aβ
has been shown to bind the calcium permeable α7 nico-
tinic acetylcholine receptors with high affinity [151].
Functionally, this interaction has been proposed to
account for the internalization of NMDA receptors
through a calcineurin dependent pathway [137,152].
Because these studies focus on post-synaptic cholinergic
transmission, it is unclear whether interactions with ace-
tylcholine receptor signalling directly account for the dis-
ruption of pre-synaptic cholinergic projections in AD,
such as those extending from the nucleus basalis of Mey-
nert.

Hebbian mechanisms of synapse modulation often impli-
cate involvement of NMDA receptors, which transduce
the level of synaptic activity into a calcium signal that can
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initiate an array of signalling pathways. The current-volt-
age relationship that is generated by the magnesium block
of this receptor is a key determinant in the amount of cal-
cium that enters upon glutamate binding. Whether
NMDA receptor activation will result in LTP or LTD
appears to be dependent on the amplitude and kinetics of
the calcium transient through the channel [153,154]. A
number of studies have reported that the effects of Aβ on
the viability, morphology and physiology of neurons are
dependent on NMDA receptor activation [106,111,155].
Memantine, an activity dependent NMDA receptor antag-
onist is used for the treatment of AD. Initially it was pro-
posed to mitigate glutamate excitotoxicity, but it may also
block more subtle effects of NMDA receptor activation
that lead to synaptic depression and loss.

Activation of metabotropic glutamate receptors (mGluR)
recruits a number of signalling pathways (such as p38
MAP kinase or ERK), stimulates release of intracellular cal-
cium stores through generation of inositol triphosphate,
or modulates associated ionic channels. These effects may
result in post-synaptic AMPA receptor endocytosis [156]
and decreased pre-synaptic neurotransmitter release prob-
ability [157], both of which decrease synaptic strength.
Understanding the contribution of these receptors to Aβ-
mediated synaptic depression is difficult because of the
high variability in mechanisms linked to mGluRs across
brain regions and developmental time periods. However,
various groups have reported that Aβ mediates synaptic
depression and loss through activation of group I mGluRs
with p38 MAP kinase and calcineurin as downstream
effectors [77,94,104,145,152].

We have found that Aβ oligomers from a variety of sources
can facilitate LTD through both mGluRs and NMDA
receptors and that this appears to involve dysregulation of
the neuronal glutamate transporter [94]. A role for aber-
rant glutamate transport is supported by in vivo microdial-
ysis experiments in which micro-injection of oligomer-
containing 7PA2 CM caused a rapid and massive increase
in hippocampal interstitial fluid glutamate [158].

In addition to receptors well-known for their involvement
in synaptic plasticity, Aβ also appears to engage with other
synapse proteins. For example, ADDLs appear to perturb
insulin signalling by inducing preferential somatic distri-
bution of the receptor via an NMDAR-dependent pathway
[159]. Similarly, non-infectious conformations of the cel-
lular prion protein (PrP) have also been demonstrated to
bind ADDLs and the role of PrP as a disease-relevant
receptor for Aβ is supported by the finding that knock-out
of PrP rescues the block of LTP mediated by ADDLs [121].

But how can the myriad interactions demonstrated
between Aβ and several classes of receptors be explained?

One possibility is that these reports are all correct, but that
Aβ does not directly target a single receptor per se, but
rather it interacts with synaptic membranes and influ-
ences the expression and distribution of receptors thus
mimicking the same effect as if Aβ had directly bound and
antagonized the effected receptors. Another possibility
lies in the diversity of the different assembly forms and
conformations of Aβ used. It is quite possible that differ-
ent Aβ assemblies or conformation have different targets
thus depending on the form of Aβ used one group can
report activation of the insulin receptor and another
antagonism of α7 nicotinic acetylcholine receptors.

Therapeutic targeting of synaptotoxic Aβ oligomers
Although our understanding of how and what forms of Aβ
mediate synaptic dysfunction is incomplete, there is a
growing consensus that soluble non-fibrillar Aβ interacts
either directly or indirectly with one or more receptors ini-
tiating transduction mechanisms that result in decreased
plasticity (see appendix 1). If correct, this information
already provides for the rational design of disease-modify-
ing therapeutics. Plausible approaches include neutraliz-
ing one or more forms of synaptotoxic, non-fibrillar Aβ,
and preventing Aβ-mediated perturbations of receptors.
As our understanding of the mechanisms contributing to
synapse dysfunction continues to develop so too addi-
tional therapeutic targets are likely be revealed. In this
regard the application of unbiased paradigms in which
synaptic alterations are delineated following exposure to
well defined soluble Aβ assembly forms should yield
novel insights on the pathogenesis of synapse loss (see
appendix 2). This information may not only assist in drug
design to halt neurodegeneration in AD, but may also pro-
mote synapse regeneration. Thus the dream of curing AD
may be realized not by just preventing neuronal death,
but by actively promoting synaptic connectivity.

Competing interests
DMW is a shareholder and member of the scientific advi-
sory board of Senexis, plc.

Authors' contributions
DMW designed the layout and content of the review and
DMW and GMS co-wrote the text.

Appendix 1
Key observations

1. Synaptic loss is an early and invariant feature of AD
the extent of which correlates closely with severity of
dementia.

2. MCI and early stage AD have a strong amnestic pres-
entation implicating dysfunction of hippocampal and
medial temporal lobe circuitry.
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3. Soluble forms of Aβ present in human brain corre-
late well with synaptic loss and dementia status.

4. Synaptic plasticity as measured by changes in LTP
and spine density are perturbed in transgenic animals
models of AD and are associated with impaired spatial
learning and memory.

5. Changes in plasticity and memory often occur at
intervals before transgenic animals have detectable
amyloid deposits and can be reversed by acute treat-
ment with anti-Aβ antibodies.

6. Synthetic, cell culture- and brain-derived Aβ inhibits
LTP, facilitates LTD, reduces spine and synaptic densi-
ties and impairs the memory of learned behaviour.

Appendix 2
Critical next steps

1. Employ sophisticated biophysical techniques to
determine the size and structure of synaptotoxic
human brain-derived Aβ.

2. Identify the cellular and molecular targets of Aβ oli-
gomers.

3. Elucidate the mechanism by which Aβ mediates
synaptic compromise: delineating whether these
effects involve disruption of receptors secondary to
membrane destabilization or are a result of direct Aβ
receptor binding.

4. Determine if and how Aβ oligomers alter tau aggre-
gation and/or phosphorylation and how this is linked
to neuronal loss.
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