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Abstract This series of reviews focuses on the most important neuromuscular
function in many sport performances: the ability to generate maximal muscular
power. Part 1, published in an earlier issue of Sports Medicine, focused on the
factors that affect maximal power production while part 2 explores the
practical application of these findings by reviewing the scientific literature
relevant to the development of training programmes that most effectively
enhance maximal power production. The ability to generate maximal power
during complex motor skills is of paramount importance to successful athletic
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performance across many sports. A crucial issue faced by scientists and
coaches is the development of effective and efficient training programmes
that improve maximal power production in dynamic, multi-joint movements.
Such training is referred to as ‘power training’ for the purposes of this review.
Although further research is required in order to gain a deeper understanding
of the optimal training techniques for maximizing power in complex, sports-
specific movements and the precise mechanisms underlying adaptation, sev-
eral key conclusions can be drawn from this review. First, a fundamental
relationship exists between strength and power, which dictates that an in-
dividual cannot possess a high level of power without first being relatively
strong. Thus, enhancing and maintaining maximal strength is essential when
considering the long-term development of power. Second, consideration of
movement pattern, load and velocity specificity is essential when designing
power training programmes. Ballistic, plyometric and weightlifting exercises
can be used effectively as primary exercises within a power training pro-
gramme that enhances maximal power. The loads applied to these exercises
will depend on the specific requirements of each particular sport and the type
of movement being trained. The use of ballistic exercises with loads ranging
from 0% to 50% of one-repetition maximum (1RM) and/or weightlifting ex-
ercises performed with loads ranging from 50% to 90% of 1RM appears to be
the most potent loading stimulus for improving maximal power in complex
movements. Furthermore, plyometric exercises should involve stretch rates as
well as stretch loads that are similar to those encountered in each specific
sport and involve little to no external resistance. These loading conditions
allow for superior transfer to performance because they require similar
movement velocities to those typically encountered in sport. Third, it is vital
to consider the individual athlete’s window of adaptation (i.e. the magnitude
of potential for improvement) for each neuromuscular factor contributing
to maximal power production when developing an effective and efficient
power training programme. A training programme that focuses on the least
developed factor contributing to maximal power will prompt the greatest
neuromuscular adaptations and therefore result in superior performance
improvements for that individual. Finally, a key consideration for the long-
term development of an athlete’s maximal power production capacity is the
need for an integration of numerous power training techniques. This in-
tegration allows for variation within power meso-/micro-cycles while still
maintaining specificity, which is theorized to lead to the greatest long-term
improvement in maximal power.

Part 1[1] of this review discussed the biological
basis for maximal power production. Part 1 high-
lighted that maximal muscular power is influenced
by a wide variety of interrelated neuromuscular
factors including muscle fibre composition, cross-
sectional area, fascicle length, pennation angle
and tendon compliance as well as motor unit re-
cruitment, firing frequency, synchronization and
inter-muscular coordination. Maximal power is

also affected by the type of muscle action in-
volved and, in particular, the time available to
develop force, storage and utilization of elastic
energy, interactions of contractile and elastic ele-
ments, potentiation of contractile and elastic fi-
laments as well as stretch reflexes. Furthermore,
acute changes in the muscle environment impact
the ability to generate maximal power. Thus, de-
velopment of training programmes that enhance
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maximal power must involve consideration of
these factors and the manner in which they re-
spond to training. The purpose of part 2 is to
explore the practical applications of the findings
of part 1 by reviewing the scientific literature relevant
to the development of training programmes that
most effectively improvemaximal power production
in dynamic athletic movements.

The search for scientific literature relevant to
this review was performed using the US National
Library of Medicine (PubMed), MEDLINE and
SportDiscus� databases. The specific search terms
utilized included ‘maximal power’, ‘muscular power’,
‘power training’, ‘ballistic training’, ‘plyometric
training’ and ‘weightlifting training’. Relevant
literature was also sourced from searches of re-
lated articles arising from the reference list of
those obtained from the database searches. The
studies reviewed examined factors that could
potentially influence the ability to improve max-
imal power production through training.

1. Role of Strength in Maximal Power
Production

A fundamental relationship exists between
strength and power, which dictates that an in-
dividual cannot possess a high level of power
without first being relatively strong. This asser-
tion is supported by the robust relationship that
exists between maximal strength and maximal
power production as well as countless empirical
observations of the differences in strength and
power capabilities between elite and sub-elite
athletes.[2-9] Cross-sectional comparisons have re-
vealed that individuals with higher strength levels
have markedly superior power production cap-
abilities than thosewith a low level of strength[7,10-17]

(table I). Furthermore, research has demonstra-
ted that heavy strength training programmes in-
volving untrained to moderately trained subjects
resulted not only in improved maximal strength
but also increased maximal power output.[9,18-27]

While strength is a basic quality that influences
maximal power production, the degree of this
influence diminishes somewhat when the athlete
maintains a very high level of strength.[28] As
maximal strength is increased, the window of

adaptation for further strength enhancement is
reduced. Consequently, increases in maximal power
output following strength training are expected
to be lower in stronger individuals and more ve-
locity specific in that the changes would impact
primarily on the high-force end of the force-
velocity relationship.[29-34] Theoretically, if a well
trained, strong athlete was able to enhance max-
imal strength at the same rate as an untrained
novice through either steroid use and/or creative
strength training protocols, the degree to which
strength training would influence maximal power
production would be quite similar. In any case,
the current strength level of an athlete will always
dictate the upper limit of their potential to generate
maximal muscular power because the ability to
generate force rapidly is of little benefit if maximal
force is low.[32] Therefore, the ability to generate
superior maximal muscular power is considerably
influenced by the individual’s level of strength.

Stronger individuals possess favourable neuro-
muscular characteristics that form the basis for
superior maximal power production. For ex-
ample, following the first 3 years of a periodized
strength training programme the neuromuscular
profile would be significantly enhanced. Whole
muscle cross-sectional area (CSA) would be con-
siderably greater[35-56] as a result of increased
myofibrillar CSA of type I and, to a greater de-
gree, type II fibres.[35,37,41,42,44,45,57-60] It is highly
likely that pennation angle[46,52] and possibly
even fascicle length[48,49,55,61] would be greater.
Additionally, neural drive[21,29,40,62-68] as well
as inter- and possibly even intra-muscular co-
ordination[66,68-73] would be far superior after the
3 years of training. These neuromuscular char-
acteristics would result in a shift in the force-
velocity relationship so that the force generated
by muscle would be greater for any given velocity
of shortening.[9,20,25,26] As a result,maximalmuscular
power output would be far superior following
the 3 years of strength training.[20,24-26,41,56,74,75]

Therefore, enhancing maximal strength is a vital
consideration when designing training programmes
that maximize the long-term development of max-
imal muscular power.

While previous research has demonstrated
that improvements in strength are accompanied
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Table I. Summary of cross-sectional studies comparing maximal power production between stronger and weaker subjects

Study (year) No. of subjects Subject demographics Strength test

conducted

Strength level (mean – SD) Power test

conducted

Maximal power (mean – SD)

stronger weaker stronger weaker stronger weaker stronger weaker

Bourque[10]

(2003)

8 8 Well trained male

volleyball and

badminton players

Well trained M long-

distance runners

Smith

machine

squat 1RM

(kg/kg)

2.36* – 0.74 1.74 – 0.32 Maximum

CMJ power

(W/kg)

76.3* – 10.8 59.2 – 11.1

Baker and

Newton[14]

(2006)

6 6 M 1st division

national rugby

league players

M 2nd division state

rugby league

players

BP 1RM

(kg/kg)

1.46* – 0.12 1.19 – 0.13 Maximum

BP throw

power

(W/kg)

6.97* – 0.64 5.51 – 0.55

Baker and

Newton[15]

(2008)

20 20 M 1st division

national rugby

league players

M 2nd division state

rugby league

players

Squat 1RM

(kg)

175.0* – 27.3 149.6 – 14.3 Maximum

CMJ power

(W)

1897* – 306 1701 – 187.0

Cormie

et al.[17] (2010)

12 18 Stronger physically

active men

Weaker physically

active men

Squat 1RM

(kg/kg)

1.97* – 0.08 1.32 – 0.14 Maximum

CMJ power

(W/kg)

59.8* – 3.8 50.2 – 5.2

Cormie

et al.[11] (2009)

12 18 Division I M football

and track athletes

Untrained men Squat 1RM

(kg/kg)

1.93* – 0.22 1.40 – 0.27 Maximum

CMJ power

(W/kg)

71.7* – 10.7 55.9 – 8.0

McBride

et al.[12] (1999)

8 8 National level M

power lifters

Moderately active

men

Smith

machine

squat 1RM

(kg/kg)

2.88* – 0.14 2.13 – 0.14 Maximum

CMJ power

(W/kg)

56.9* – 2.5 49.4 – 2.6

6 8 National level M

Olympic lifters

Moderately active

men

Smith

machine

squat 1RM

(kg/kg)

2.86* – 0.15 2.13 – 0.14 Maximum

CMJ power

(W/kg)

63.0* – 2.7 49.4 – 2.6

6 8 National level M

sprinters

Moderately active

men

Smith

machine

squat 1RM

(kg/kg)

2.66* – 0.16 2.13 – 0.14 Maximum

CMJ power

(W/kg)

63.8* – 2.9 49.4 – 2.6

Stoessel

et al.[13] (1991)

14 13 National level F

weightlifters

Untrained women VJ height

(m)

0.50* – 0.08 0.32 – 0.07

Stone et al.[7]

(2003)

5 5 Strongest out of a

pool of 22

resistance trained

men

Weakest out of a

pool of 22

resistance trained

men

Squat 1RM

(kg)

212.5* – 8.4 95.0 – 6.3 Maximum

CMJ power

(W)

5391* – 2566 3785 – 376

Ugrinowitsch

et al.[16] (2007)

10 10 M track athletes

with international

experience

Physically active

men

Leg press

1RM (kg)

364.5 – 115.1 304.0 – 47.3 Maximum

CMJ height

(m)

0.40* – 0.05 0.30 – 0.05

1RM = one-repetition maximum; BP = bench press; CMJ = countermovement jump with no arm swing; F = female; kg/kg = the ratio between 1RM in kg and body mass in kg; M = male;

VJ = vertical jump a CMJ with an arm swing; * indicates significant (p £ 0.05) difference between stronger and weaker groups.

128
C

orm
ie

et
al.

ª
2
0
1
1

A
d

is
D

a
ta

In
fo

rm
a

tio
n

B
V

.
A

llrig
h

ts
re

se
rv

e
d

.
Sp

o
rts

M
e

d
2
0
1
1
;
4
1

(2
)



by increased power output,[9,18-24,27] much of this
research involved training relatively novice sub-
jects with low to moderate strength levels, in
which improvements in muscular function are
easily invoked and relatively non-specific. Further
improvement in maximal muscular power and
performance enhancement in well trained athletes,
requires a multifaceted approach incorporating a
variety of training strategies targeting specific areas
of the force-velocity relationship.[28,31]

2. Movement Pattern Specificity

The ability to generate maximal power in dy-
namic, multi-joint movements is dependent on
the nature of the movement involved.[76,77] There-
fore, the exercises selected for a power training
programme may influence the magnitude of per-
formance improvements and type of adaptations
observed. A range of movements have been pre-
viously prescribed for improving maximal power
output including traditional resistance training ex-
ercises, ballistic exercises, plyometrics and weight-
lifting exercises (table II).

2.1 Traditional Resistance Training Exercises

Inherent in traditional resistance training ex-
ercises such as the squat or bench press, is a sub-
stantial period where the load is decelerated
towards the end of the range of motion.[77,84] For
example, in the bench press the deceleration has
been reported to last for 23% of the total dura-
tion of a one-repetition maximum (1RM) and
is increased to 52% of the total duration when
the load was reduced to approximately 80% of
1RM.[84] When the movement is performed ra-
pidly with a lower load of 45% of 1RM in an
attempt to increase sports specificity, the decel-
eration phase still extends for approximately
40–50% of the total movement duration.[77] Thus,
even if traditional resistance training exercises
are performed with light loads and the athlete is
instructed to perform these movements rapidly,
this deceleration results in movement velocities
lower than those typically encountered in sporting
movements such as jumping or throwing.[76,77]

Furthermore, this deceleration phase is associated

with decreased muscle activation of the agonists
and the possibility of increased muscle activity in
the antagonist muscles in order to stop the load at
the end of the range of motion.[77] As a result of
this decreased mechanical specificity, the transfer
of training effect following a programme involv-
ing traditional resistance training exercises is re-
duced. Despite this, traditional resistance training
exercises have been successfully used to improve
maximal power output in dynamic, sports-specific
movements.[22-24,32,85-88] While performance of
these exercises requires the generation of relatively
high power outputs, improvements in maximal
power following training have primarily been
a result of the physiological adaptations re-
sponsible for increasing maximal strength in-
cluding increased CSA and neural drive.[35,85,89]

Consequently, significant increases in maximal
power following training with traditional resis-
tance training exercises occur in relatively un-
trained subjects with low to moderate strength
levels and diminish as strength level increases.[29-32]

It is possible, however, that if maximal strength
did not become asymptotic as a result of anabolic
steroid use, enhancing maximum strength through
the use of traditional resistance training exercises
would continue to improve maximal muscular
power. Therefore, without consideration of ana-
bolic steroid use, increases in maximal power
output following training with these exercises are
prominent in the early phases of training or in
athletes who maintain a relatively low level of
strength such as endurance athletes.[32,90] While
the use of traditional resistance training exercises
are vital in the development of strength and
power, further training induced improvement in
maximal power requires the involvement of
other, more mechanically specific movements.

2.2 Ballistic Exercises

Ballistic exercises including the jump squat
and bench press throw circumvent any decelera-
tion phase by requiring athletes to accelerate
throughout the entire range of motion to the
point of projection (i.e. takeoff or release).[77]

Ballistic exercises are overloaded by increasing
the load required to be projected. Typically, these
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Table II. Summary of studies examining changes in maximal power production following a power training intervention

Study

(year)a
No. of

subjects

Subject demographics Experimental groups Power training programmeb Training

duration

(wk)

Major findings

Cormie

et al.[17]

(2010)

24 Physically active men

with a variety of training

backgrounds;

squat 1RM : BM

~1.35–1.97

Ballistic training in

weaker subjects

(n = 8); ballistic

training in stronger

subjects (n = 8);

control (n = 8)

3 sessions/wk:

Ballistic: jump squats, session 1 and 3,

7 · 6 at 0% 1RM; session 2, 5 · 5 at

30% 1RM

10 Both weaker and stronger ballistic: ›PP, MP

and PD in 0%, 20% and 40% 1RM*, › PD in

CMJ*; › RFD in isometric squat and CMJ*,

› 40 m sprint performance*, 2 squat 1RM; no

difference in › maximal P between the training

groups; CON: 2 any outcome measures

Cormie

et al.[27]

(2010)

24 Physically active men

who could perform a

back squat with

proficient technique;

squat 1RM : BM ~1.34

Ballistic training

(n = 8); TRTE training

(n = 8); control (n = 8)

3 sessions/wk:

Ballistic: jump squats 5–7 · 5–6 at 0–30% 1RM;

TRTE: squats, 3 · 3–5 at 75–90% 1RM

10 Ballistic: › PP, MP and PD in 0%, 20% and

40% 1RM*, › PD in CMJ*; › RFD in isometric

squat and CMJ*, › 40 m sprint performance*,

2 squat 1RM; TRTE: › PP, MP and PD in 0%,

20%, 40% and 60% 1RM*, › PD in CMJ*;

› RFD in CMJ*,› 40 m sprint performance*,

› squat 1RM*; no difference in › maximal P

between the training groups; CON: 2 any

outcome measures

Cormie

et al.[78]

(2007)

26 Recreationally trained

men; squat 1RM : BM

~1.47

Ballistic training

(n = 10); ballistic +
TRTE training (n = 8);

control (n = 8)

2 sessions/wk:

Ballistic: jump squats, 7 · 6 at 0% 1RM; strength-

ballistic + TRTE: jump squats, 5 · 6 at 0% 1RM

and squats, 3 · 3 90% 1RM

12 Ballistic: › PP and PD in 0, 19% 1RM*,

2 squat 1RM; strength-power EXP: › PP and

PD in 0%, 17%, 35%, 52%, 70% 1RM*, › squat

1RM*; no difference in › maximal P between

the training groups; CON: 2 any outcome

measures

Hawkins

et al.[79]

(2009)

29 Non-athlete college-

aged M; squat

1RM : BM ~1.35

TRTE training

(n = 10); plyometric

training (n = 10);

weightlifting training

(n = 9)

3 sessions/wk:

TRTE: squat, deadlift, lunges, etc., 3 · 4–10RM;

plyometric: drop jumps, CMJ, hops, bounding,

etc. 3 · 3–10; weightlifting: hang clean, high pull,

split jerks, etc. 3 · 2–8RM

8 TRTE: › PD in VJ*, › squat 1RM*;

plyometric: › PD in VJ*, › squat 1RM*;

weightlifting: › PP in CMJ*, › PD in VJ*,

› squat 1RM*; no difference in › maximal P

between the training groups

Holcomb

et al.[80]

(1996)

51 Men recruited from

university physical

education classes;

1RM, NR

Ballistic training

(n = 10); TRTE

training (n = 12);

plyometric training

(n = 10); ‘modified’

plyometric training

(n = 10); control

(n = 9)

3 session/wk:

Ballistic: jump squat, 9 · 8 at 0% 1RM;

TRTE: leg press, knee extension, knee flexion,

etc., 3 · 4–8RM; plyometric: drop jumps, 3 · 8 at

0.4–0.6 m heights; ‘modified’ plyometric: drop

jump variations, 3 · 8 at 0.4–0.6 m heights

8 All training groups: › PP in CMJ and static

jump*, › PD in CMJ and static jump*;

no difference in › maximal P between any of

the training groups; CON: 2 any outcome

measures

Continued next page
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Table II. Contd

Study

(year)a
No. of

subjects

Subject demographics Experimental groups Power training programmeb Training

duration

(wk)

Major findings

Kaneko

et al.[20]

(1983)

20 M who had not been

specifically trained

before; 1RM, NR

0% Fmax TRTE

training (n = 5); 30%
Fmax TRTE training

(n = 5); 60% Fmax

TRTE training (n = 5);

100% Fmax TRTE

training (n = 5)

3 sessions/wk:

TRTE: elbow flexion,

0% Fmax group: 1 · 10 at 0% Fmax;

30% Fmax group: 1 · 10 at 30% Fmax;

60% Fmax group: 1 · 10 at 60% Fmax;

100% Fmax group: 1 · 10 holds at 100% Fmax

12 All TRTE groups: › maximal P in elbow

flexion*, › maximal velocity in elbow flexion*;

0% and 30% Fmax groups: 2 Fmax in elbow

flexion; 60% and 100% Fmax groups: › Fmax in

elbow flexion*; no difference in › maximal P

between groups

Kyröläinen

et al.[81]

(2005)

23 Recreationally active

men; 1RM, NR

Ballistic + plyometric

training (n = 13);

control (n = 10)

2 sessions/wk:

Ballistic + plyometric: jump squat, 5–10

repetitions at 30–60% 1RM; drop jumps from

0.2 m to 0.7 m heights; hops and hurdle jumps

15 Ballistic + plyometric: › knee joint P during a

drop jump*, › PD in a drop jump*, › RFD in

isometric knee extension*; CON: 2 any

outcome measures

Lyttle

et al.[82]

(1996)

33 Men who participate in

various regional level

sports but had no

resistance training

experience; squat

1RM : BM ~1.33

Ballistic training

(n = 11); TRTE +
plyometric training

(n = 11); control

(n = 11)

2 sessions/wk:

Ballistic: jump squat, and bench press throw,

2–6 · 8 at 30% 1RM; TRTE + plyometric: squat,

1–3 · 6–10RM; bench press, 1–3 · 6–10RM;

drop jump, 1–2 · 6–10 at 0.2 m–0.6 m heights

and drop medicine ball throws, 1–2 · 6–10 at

0.0–1.6 m drop heights

8 Both ballistic and TRTE + plyometric: › MP in

6 s cycle*,› PD in CMJ*, › squat 1RM*, › PD

in medicine ball and shot put throws*,

› impulse during SSC and concentric-only

push up*; no difference in › maximal P

between the training group; CON:

2 any outcome measures

McBride

et al.[21]

(2002)

26 Athletic men with

varying levels of

resistance training

experience;

Smith machine squat

1RM : BM ~1.84

30% 1RM ballistic

training (n = 9)

80% 1RM ballistic

training (n = 10)

control (n = 7)

2 sessions/wk:

Ballistic: jump squats,

30% 1RM group: 5 sets at 30% 1RM;

80% 1RM group: 4 sets at 80% 1RM;

as many reps until a 15% fl in PP

8 30% 1RM ballistic: ›PP in 30%, 50% and 80%
1RM jump squat*, › squat 1RM*, NS › 20 m

sprint performance; 80% 1RM ballistic: › PP in

50% and 80% 1RM jump squat*, › squat 1RM*,

fl 20 m sprint performance*; no difference in

› maximal P between the training groups;

CON: › PP in 80% 1RM jump squat*;

2 any other outcome measures

Moss

et al.[9]

(1997)

30 M physical education

students; elbow flexion

1RM ~20 kg

90% 1RM TRTE

training (n = 9);

35% 1RM TRTE

training (n = 11);

15% 1RM TRTE

training (n = 10)

3 sessions/wk:

TRTE: elbow flexion,

90% 1RM group: 3–5 · 2 at 90% 1RM;

35% 1RM group: 3–5 · 7 at 35% 1RM;

15% 1RM group: 3–5 · 10 at 15% 1RM

9 All TRTE groups: › PP at 2.5 kg, 15%, 25%,

35% 1RM in elbow flexion*, › 1RM elbow

flexion*; 90% and 35% 1RM group: also › PP

at 50%, 60% and 90% 1RM in elbow flexion*; no

difference in › maximal P between TRTE

training groups; CON: 2 any outcome

measures
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Table II. Contd

Study

(year)a
No. of

subjects

Subject demographics Experimental groups Power training programmeb Training

duration

(wk)

Major findings

Newton

et al.[33]

(1999)

16 NCAA division I, M

volleyball players;

squat 1RM : BM ~1.69

Ballistic training

(n = 8); TRTE training

(n = 8)

2–4 sessions/wk:

Ballistic: jump squats 2 · 6 at 30% 1RM, 2 · 6 at

60% 1RM, 2 · 6 at 80% 1RM; TRTE: squat

3 · 6RM and leg press 3 · 6RM

8 Ballistic: › PP and PD in 30%, 60% and 80%
1RM jump squat*, › PD in VJ*, › 3-step

approach VJ*, 2 squat 1RM; TRTE: › PP and

PD in 30% 1RM jump squat*, 2 any other

outcome measures; no difference in › maximal

P between the training groups

Toji and

Kaneko[25]

(2004)

21 M college students who

had not exercised

regularly for at least 1 y;

1RM, NR

30 + 60% Fmax

TRTE training

(n = 7); 30 + 100%
Fmax TRTE training

(n = 7); 30 + 60 + 100%
Fmax TRTE training

(n = 7)

3 sessions/wk:

TRTE: elbow flexion,

30 + 60% Fmax group: 1 · 6 at 30% Fmax and 1 · 6

at 60% Fmax; 30 + 100% Fmax group: 1 · 6 at 30%
Fmax and 1 · 6 5 s holds at 100% Fmax;

30 + 60 + 100% Fmax group: 1 · 4 at 30% Fmax,

1 · 4 at 60% Fmax and 1 · 4 5 s holds at 100%
Fmax

8 All TRTE groups: › maximal P in elbow

flexion*, › maximal velocity in elbow flexion*,

› Fmax in elbow flexion*; › maximal P greater

in 30% + 60% + 100% Fmax group vs

30% + 100% Fmax group›

Toji et al.[26]

(1997)

12 M college students who

had not exercised

regularly for at least 1 y;

1RM, NR

30 + 0% Fmax

TRTE training

(n = 6); 30 + 100%
Fmax TRTE training

(n = 6)

3 sessions/wk:

TRTE: elbow flexion,

30 + 0% Fmax group: 1 · 5 at 0% Fmax and 1 · 5 at

60% Fmax; 30 + 100% Fmax group: 1 · 5 at 30%
Fmax and 1 · 5 3 s holds at 100% Fmax

11 Both TRTE groups: › maximal P in elbow

flexion*, › maximal velocity in elbow flexion*;

30% + 0% group: 2 Fmax in elbow flexion;

30% + 100% group: › Fmax in elbow flexion*;

› maximal P greater in 30% + 100% Fmax group

vs 30% + 0% Fmax group-

Wilson

et al.[24]

(1993)

64 Previously trained men;

1RM : BM, NR

Ballistic training

(n = 16); TRTE

training (n = 16);

plyometric training

(n = 16); control

(n = 16)

2 sessions/wk:

Ballistic jump squats 3–6 · 6–10 at ~30% Fmax;

TRTE: squat 3–6 · 6–10RM; plyometric: drop

jumps 3–6 · 6–10 at 0.2–0.8 m heights

10 Ballistic: › MP in 6 s cycle*, › PD in CMJ and

SJ*, NS › 30 m sprint performance; TRTE:

› PD in CMJ and SJ*, › Fmax
*; plyometric:

› PD in CMJ*. CON: 2 any outcome

measures; no difference in › maximal P

between the training groups

Winchester

et al.[83]

(2008)

14 M with at least 3 mo

training experience;

squat 1RM : BM ~1.45

Ballistic training

(n = 8); control (n = 6)

3 session/wk:

Ballistic: jump squat 3 · 3–12 at 26–48% 1RM

8 Ballistic: ›PP in 30% 1RM jump squat*;

› RFD in isometric mid-thigh pull*;2 squat 1RM;

CON: 2 any outcome measures

a Only studies that included a specific measurement of power output were included in this table.

b Training programme is expressed as sets · repetitions.

BM = body mass; CMJ = countermovement jump with no arm swing; CON = control group; Fmax = maximal isometric force; M = male(s); MP = mean power; NCAA = National Collegiate

Athletic Association; NR = not reported; NS = non-statistically significant change; P = power; PD = peak displacement; PP = peak power; RFD = rate of force development;

RM = repetition maximum; SJ = concentric-only jump with no arm swing; SSC = stretch shorten cycle; TRTE = traditional resistance training exercise; VJ = vertical jump a CMJ with an

arm swing; › indicates improvement following training; fl indicates decrease following training; 2 indicates no change following training; ~ indicates approximately; * indicates

significant (p £ 0.05) change following training; - indicates significant (p £ 0.05) difference between training groups.
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exercises are performed across a variety of load-
ing conditions from 0–80% of 1RM in a similar
traditional resistance training exercise such as the
squat or bench press based on the specific exercise
utilized and the requirements of the sport. Stem-
ming from the continued acceleration throughout
the range of motion, concentric velocity, force,
power and muscle activation are higher during a
ballistic movement in comparison to a similar
traditional resistance training exercise.[76,77] As a
result, many researchers and coaches recommend
the inclusion of ballistic exercises rather than
traditional resistance training exercises in power
training programmes.[24,28,31,33,76,77,91] These rec-
ommendations are based on the fact that ballistic
exercises are generally more sport specific for a
vast number of sports and therefore may prompt
adaptations that allow for greater transfer to per-
formance. Supporting such recommendations is
research demonstrating significant improvements
in maximal power output during sports-specific
movements following training with ballistic ex-
ercises.[21,24,33,78,81-83,92] Furthermore, the ability
to generate power is also improved across a vari-
ety of low- and high-load conditions following
training.[21,33,78] For example, an 8-week training
intervention involving well trained male volley-
ball players with a squat 1RM to body mass ratio
of approximately 1.69 revealed that training with
ballistic jump squats resulted in a significantly
greater change in sport-specific vertical jump
performance than training with traditional resis-
tance training exercises including the squat and
leg press.[33] Therefore, training with ballistic ex-
ercises allows for athletes with various training
ages and strength levels to improve power pro-
duction in a variety of sports-specific movements.
The precise mechanisms driving adaptation to
power training involving ballistic exercises are not
clearly defined. It is possible that these move-
ments elicit adaptations in neural drive, the rate
of neural activation and inter-muscular coordi-
nation that are specific to movements typically
encountered in sports. These adaptations are
hypothesized to contribute to observations of
enhanced rate of force development (RFD) and
result in the ability to generate more force in
shorter periods of time.[19,21,33,78,81] Hence, the

use of ballistic exercises in power training pro-
grammes is very effective at enhancing maximal
power output in sports-specific movements as
well as power production capabilities under a
variety of loading conditions.

2.3 Plyometrics

Plyometrics are exercises characterized by rapid
stretch-shorten cycle (SSC) muscle actions.[93]

A great deal of exercises are classified as plyo-
metric including a range of unilateral and bi-
lateral medicine ball throws, push ups, bounding,
hopping and jumping variations.[93] While plyo-
metric exercises are ballistic in nature, they are
delineated from specific ballistic exercises within
this review due to the way these exercises are
overloaded. Typically, plyometric exercises are
performed with little to no external resistance,
such as with body mass only or light medicine
ball, and overload is applied by increasing the
stretch rate by minimizing the duration of the
SSC and/or stretch load by, for example, increas-
ing the height of the drop during drop jumps.[94]

Plyometric exercises can therefore be tailored to
train either short SSC movements characterized
by a 100–250ms duration (i.e. ground contact in
sprinting, long or high jump), or long SSC move-
ments characterized by duration greater than
250ms (i.e. countermovement jump [CMJ] or
throw).[95] As a result of the ability to target both
short and long SSCs as well as the ballistic nature
of these movements, plyometric exercises are very
specific to a variety of movements typically en-
countered in sport. Hence, it is not surprising that
the use of plyometrics in power training pro-
grammes has been shown to significantly improve
maximal power output during sports-specific move-
ments.[24,80,82,88,96-102] These improvements are,
however, typically restricted to low-load/high-
velocity SSC movements.[24,102] The current lit-
erature involving the use of plyometric training
does not provide much insight into the mechan-
isms driving improvements in maximal power.
Similar to ballistic exercises, plyometrics are the-
orized to elicit specific adaptations in neural
drive, the rate of neural activation and inter-
muscular control, which result in improved RFD
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capacity.[98,103] Adaptations to the aforementioned
mechanisms driving enhanced performance dur-
ing SSC movements are also hypothesized to
contribute to improved maximal power produc-
tion following plyometric training.[98,103] There-
fore, the high degree of specificity of plyometric
training to a range of sporting movements make
power training programmes incorporating plyo-
metric exercises very effective at improving max-
imal power in sports-specificmovements.[24,80,82,97-99]

2.4 Weightlifting Exercises

Weightlifting exercises such as the snatch or
clean and jerk and their variations, some of which
include the hang/power clean, hang/power snatch
and high pull, are commonly incorporated into
power training programmes of athletes who com-
pete in all types of sports.[104-106] Similar to bal-
listic exercises, weightlifting exercises require athletes
to accelerate throughout the entire propulsive
phase or second pull, causing the projection of
the barbell and often the body into the air.[107,108]

However, they differ from ballistic exercises in
that they require the athlete to actively decelerate
their body mass in order to catch the barbell. The
inherent high-force, high-velocity nature of weight-
lifting exercises creates the potential for these
exercises to produce large power outputs across
a variety of loading conditions. In fact, power
output during weightlifting exercises has com-
monly been found to be greatest at loads equivalent
to 70–85% of 1RM in snatch or clean.[76,109,110]

Additionally, the movement patterns required in
weightlifting exercises are generally believed to be
very similar to athletic movements common to
many sports such as jumping and sprinting.[111]

Empirical observations are supported by evi-
dence of similarities in the kinetic features of
the propulsive phase in both weightlifting and
jumping movements.[107,112] Significant relation-
ships have also been observed between weight-
lifting exercises and power output during jumping
(r = 0.58–0.93) as well as sprint performance
(r = -0.57).[4,113] Despite the widespread use of
weightlifting exercises to enhance power and the
evidence highlighting its specificity to athletic
movements common to many sports, little re-

search exists examining the efficacy of power
training with weightlifting exercises. In pre-
viously untrained men, Tricoli et al.[102] observed
significant improvements in static jump and CMJ
height as well as 10m sprint performance fol-
lowing 8 weeks of power training with weight-
lifting exercises. In addition, the improvement in
CMJ height was greater than the improvement
following 8 weeks of plyometric training.[102]

Power training with weightlifting exercises is
theorized to significantly improve not only max-
imal power output but, more specifically, power
output against heavy loads. Thus, the use of these
movements in training is ideal for athletes who
are required to generate high velocities against
heavy loads including wrestlers, rugby union
front rowers and American football linemen. The
mechanisms responsible for improvements fol-
lowing power training using weightlifting ex-
ercises have not yet been investigated. The skill
complexity involved with such movements to-
gether with the use of heavy loads are hypothe-
sized to elicit unique neuromuscular adaptations
that allow for improved RFD and superior
transfer to performance. Therefore, the nature of
weightlifting exercises coupled with the specifi-
city of their movement patterns to numerous
athletic movements, creates the potential for
weightlifting exercises to be very effective power
training exercises.

3. Load Specificity

Not only is the ability to generate maximal
power during sports-specific movements depen-
dent on the type of movement involved but also
the load applied to that movement. Power out-
put varies dramatically as the load an athlete
is required to accelerate during a movement
changes.[9,20,76,114,115] For example, absolute peak
power output during a jump squat, which is de-
fined as a CMJ with a bar held across the
shoulders, ranges from 6332 – 1085 W at 0% of
1RM to 3986 – 564 W at 85% of 1RM, a 37%
variation.[76] Consequently, the loading para-
meters utilized in power training programmes
influence the type and magnitude of performance
improvements observed as well as the nature of

134 Cormie et al.

ª 2011 Adis Data Information BV. All rights reserved. Sports Med 2011; 41 (2)



the physiological adaptations underlying the im-
provements. Kaneko et al.[20] illustrated that dif-
ferent training loads elicited specific changes in
the force-velocity relationship and subsequently
power output. Four groups completed 12 weeks
of elbow flexor training at different loads – 0%,
30%, 60% and 100% of maximum isometric force
(Fmax). While all groups displayed significant
improvements in maximal power, the most pro-
nounced alterations in the force-velocity rela-
tionship were seen at, and around, the load utilized
during training. For example, the 0% Fmax group
predominately improved power in low-force, high-
velocity conditions while the 100% Fmax group
predominately improved power under high-force,
low-velocity conditions.[20] Stemming from this
seminal research, a range of loading conditions
have been endorsed to elicit improvements in
maximal power output throughout the literature
including heavy loads, light loads, the ‘optimal’
load as well as a combination of loads (table II).

3.1 Heavy Loads

Despite the ensuing low movement velocity,
training with heavy loads equivalent to ‡80% of
1RM has been suggested to improve maximal
power output based on two main theories. First,
due to the mechanics of muscle contraction (i.e.
force-velocity relationship) and the positive as-
sociation that exists between strength and power,
increases in maximal strength following training
with heavy loads results in a concurrent improve-
ment inmaximal power production.[9,19,20,22,24,41,56,74]

The second theory forming the basis for the pre-
scription of heavy loads is related to the size
principle for motor unit recruitment.[116-118] Ac-
cording to the size principle, high-threshold
motor units that innervate type 2 muscle fibres,
are only recruited during exercises that require
near maximal force output.[119-121] Therefore,
the type 2 muscle fibres, which are considered
predominately responsible for powerful athletic
performances, are theorized to be more fully re-
cruited and thus trained when training involves
heavy loads.[21,24,95,122] Heavy loads are typically
utilized in conjunction with either traditional re-
sistance training exercises in strength training

programmes or both ballistic and weightlifting
exercises in power training programmes in an
attempt to improve maximal power.

Heavy loads are often prescribed in conjunc-
tion with traditional resistance training exercises
in strength training programmes with the pri-
mary goal being to improve maximal strength.
As a result of the subsequent increase in Fmax

following training, and based on the inherent
force-velocity relationship of muscle, the stronger
athlete is able to generate greater maximal power
output and improved power output throughout
the loading spectrum.[9,19,20,22,24,41,56,74] These
observations hold true for relatively weak in-
dividuals or those with a low training age and are
driven by increases in myofibrillar CSA especially
of type II muscle fibres, maximal neural drive
and RFD capabilities.[27,56,62,74,89,123] Changes to
maximal power following such training in strong,
experienced athletes are of a much smaller, non-
statistically significant magnitude.[29-32] While it
is possible that even small increases in elite ath-
letes are meaningful, the use of traditional resis-
tance training exercise with heavy loads plays an
important role in initial improvements in max-
imal power but typically not beyond the time in
which a reasonable level of strength is reached
and maintained.[28]

Heavy loads are also commonly used in power
training programmes incorporating ballistic and/
or weightlifting exercises. While there is a paucity
of research investigating the adaptations follow-
ing such training, the adaptations are theorized to
be different to heavy load training with tradi-
tional resistance training exercises.[21,76] Ballistic
and/or weightlifting training with heavy loads
would still allow for the recruitment of high
threshold motor units.[124,125] However, improve-
ments in power output following such training
are hypothesized to also be due to improvedRFD
capabilities as well as improved rate of neural
activation and inter-muscular coordination ra-
ther than being primarily driven by increased
maximal strength, CSA and maximal neural ac-
tivation typical of training at heavy loads with
traditional resistance training exercises.[19,21]

While these adaptations are theorized to posi-
tively influence maximal power output, they
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would have their greatest impact at the loads
utilized during training resulting in load/movement
velocity specific adaptations.[9,20,21] Thus, heavy
load ballistic and/or weightlifting training has the
potential to beneficially influence power output
in both novice/weak and experienced/strong ath-
letes. Unfortunately, little research exists examin-
ing the efficacy of power training with heavily
loaded ballistic and/or weightlifting exercises.
Tricoli et al.[102] reported that weightlifting train-
ing using 4–6RM loads resulted in significant
improvements in maximal jump height and 10m
sprint performance. However, this study involved
relatively untrained individuals who also per-
formed 6RM half squats as part of their pro-
gramme and showed a significant improvement
of approximately 43% in half squat 1RM fol-
lowing the training.[102] McBride et al.[21] ob-
served improvements in peak power during 55%
and 80% of 1RM jump squats but not during a
30% of 1RM jump squat following 8 weeks of
ballistic jump-squat training with 80% of 1RM.
These improvements were associated with im-
proved muscle activity of the vastus lateralis dur-
ing 55% and 80% of 1RM jump squats suggesting
load/velocity specific adaptations.[21] While more
research is required to elucidate the impact of
heavy load ballistic and weightlifting training
on power production and the mechanisms re-
sponsible for performance improvements, such
training is theorized to be ideal for athletes re-
quired to generate high power outputs against
heavy loads such as wrestlers, rugby union front
rowers and American football linemen.

3.2 Light Loads

The use of light loading conditions equiva-
lent to 0–60% of 1RM in conjunction with bal-
listic and/or plyometric exercises is commonly
recommended and utilized in power training
programmes.[9,19-21,24,80,82,83,97-99] Such training
parameters permit individuals to train at velo-
cities similar to those encountered in actual on-
field movements. Furthermore, light loads are
recommended due to the high RFD requirements
and the high power outputs associated with such
resistances.[19-21] A great deal of research has

demonstrated that ballistic and/or plyometric
training with light loads results in increases in
maximal power output during sports-specific
movements and improved athletic performance
including various jumping, sprinting and agility
tasks.[9,19-21,24,78,80-83,97-99,126] Furthermore, com-
parisons between light and heavy loads in ballistic
training programmes that involve exercises with
the same movement patterns have revealed that
maximal power has a tendency to be improved to
a greater degree following training with light
loads.[20,21] Thus, it is well established that bal-
listic and/or plyometric power training with light
loads is very effective at improving maximal power
output in sports-specific movements. Research
investigating the mechanisms responsible for
these improvements is limited. The high move-
ment velocity, RFD and power requirements of
ballistic and/or plyometric power training involving
light loads are theorized to elicit adaptations in
the rate of neural activation and inter-muscular
coordination that drive improvements.[19,21,33,78,81]

Therefore, ballistic and/or plyometric training
with light loads is recommended for athletes
who are required to generate high power outputs
during fast movements against low external loads
such as in sprinting, jumping, throwing and
striking tasks.[114] It is important to note, however,
that these findings are only relevant when light
loads are utilized with ballistic and plyometric
exercise. The use of light loads with traditional
resistance training exercises is not recommended
because such training would not provide an ade-
quate stimulus for adaptation in either the force
or velocity requirements of such exercises.[31,77]

3.3 The ‘Optimal’ Load

Throughout the literature, the load that elicits
maximal power production in a specific move-
ment is commonly referred to as the ‘optimal’
load.[24,76,109,114,127] Training with the ‘optimal’
load provides an effective stimulus to elicit increases
inmaximal power output for a specific movement as
improvements in power are most pronounced at the
load used in training.[20,21] Power is maximized at
approximately 30%Fmax in singlemuscle fibres and
single-joint movements.[20,25,26,128-132] However,
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the load that maximizes power in multi-joint,
sports-specific movements varies depending on
the type of movement involved. For example, the
‘optimal’ load typically ranges from 0% of squat
1RM in the jump squat[17,27,76,133-136] to 30–45%
of bench press 1RM in the bench press
throw[115,135] and up to 70–80% of snatch and/or
clean 1RM in weightlifting exercises.[76,109,110]

These ‘optimal’ loads vary significantly across
different exercises because power output is influ-
enced by the nature of the movement involved.
Ballistic exercises allow for high forces to be
generated in light load situations due to the con-
tinued acceleration throughout the movement.
While the jump squat and bench press throw are
both ballistic exercises, the ‘optimal’ load differs
when expressed relative to a 1RM due to the
differences in the load that must be projected.
The jump squat requires both the mass of the
body as well as any external load to be projected
while only the external load is projected in the
bench press throw. Although jump squats and
weightlifting exercises are characterized by simi-
lar degrees of ankle, knee and hip joint kine-
matics, they differ markedly in the load that
maximizes power output.[76] This is due primarily
to the fact that only the external load is being
projected in weightlifting movements and the
ballistic versus semi-ballistic nature of the move-
ments. While weightlifting exercises are per-
formed at high velocities, the body mass must be
actively decelerated in order to catch the barbell
so these exercises require greater external load in
order to generate the high forces necessary to
optimize power output. Furthermore, the ‘opti-
mal’ load of weightlifting exercises would be
much lower if expressed as a percentage of an
equivalent traditional resistance training exercise
such as the deadlift, which would be similar to
how the load is expressed for ballistic exercises.
Additionally, the load that maximizes power
in multi-joint, sports-specific movements may
also vary depending on the strength level and/
or training history of the athlete. Previous re-
search has observed the ‘optimal’ load to occur
at higher loads in individuals with significantly
greater maximal strength.[7,137] However, con-
flicting evidence exists indicating that the ‘opti-

mal’ load does not vary between individuals with
significantly different strength levels (i.e. stronger
vs weaker individuals).[17,136] Further study is
required to clarify the role of maximal strength
level and/or training history on the load-power
relationship.

Although the exact mechanisms underlying
superior adaptations after training with a specific
load remain unidentified, it is theorized that the
‘optimal’ load provides a unique stimulus due to
specific adaptations in the rate of neural activa-
tion.[19-21] This theory is supported by several in-
vestigations demonstrating that training with the
‘optimal’ load resulted in superior improvements
in maximal power production than other loading
conditions.[9,20,21,24] While the scientific evidence
illustrates that training at the ‘optimal’ load is
very effective for improving maximal power out-
put in a specific movement over short-term in-
terventions lasting only 8–12 weeks, this does not
necessarily mean that training at the ‘optimal’
load is the best or only way to increase maximal
power over a long-term training programme.
Furthermore, it is unknown if similar results
would be observed when training well trained or
elite athletes as much of this research has in-
volved homogeneous groups of low to moder-
ately trained subjects. Even so, power training
programmes in which movements are performed
at the ‘optimal’ load are a potent stimulus for
improving maximal power output in a specific
movement.

3.4 Combination of Loads

Power training using light loads improves
muscular performance in the high-velocity area
of the force-velocity relationship (i.e. power at
high velocities against low loads), and the use of
heavy loads enhances muscular performance in
the high-force portion of the curve (i.e. power at
low velocities against heavy loads).[9,19-21,62,130,138]

The theory behind the use of a combination of
loads in a power training programme is to target
all areas of the force-velocity relationship in an
attempt to augment adaptations in power output
throughout the entire curve. Thus, it is argued
that training with a combination of loads may

Training to Improve Maximal Power 137

ª 2011 Adis Data Information BV. All rights reserved. Sports Med 2011; 41 (2)



allow for all-round improvements in the force-
velocity relationship that results in superior in-
creases in maximal power output and greater
transfer to performance than either light or heavy
load training alone.[25,26]

Research has established that significant improve-
ments in maximal power output and various athletic
performance parameters occur following training
with a combination of loads.[25,26,33,78,81,82,88,122,139]

Furthermore, results from some of these in-
vestigations suggest that improvements in max-
imal power and athletic performance are more
pronounced in combined light and heavy load
training programmes compared with program-
mes involving training at a single load or other
load combinations.[25,26,78,88,122] However, most
of these studies did not control for the total work
completed by various groups[25,26,88,122] and thus
it is difficult to delineate whether the loading
parameters or the differences in total work per-
formed contributed to their observations. While
equalizing the work of different training pro-
grammes has the potential to impact the optimum
programme design, it is an important considera-
tion when examining the efficacy of using a
combination of loads. Cormie et al.[78] reported
no differences in maximal power output or max-
imal jump height between a light load only pro-
gramme and a combined light and heavy load
programme when the total work done during
training was equivalent. However, the combined
training group also displayed improvements in
power and jump height throughout a range of
loaded jump squats and improved both Fmax and
dynamic 1RM. No such improvements were ob-
served in the light load only group.[78] These re-
sults suggest that the combination of light and
heavy loads elicits greater all round improve-
ments in the strength-power profile than power
training with a light load only. However, each
of the research investigations relevant to this
topic were conducted on relatively in-experienced,
weak subjects and typically involved a combina-
tion of ballistic exercises and traditional resis-
tance exercises such as jumps and squats rather
than a combination of ballistic exercises or
weightlifting exercises with light and heavy loads
(i.e. 0–80% of 1RM jump squats or 40–80% of

1RM snatch/clean). Consequently, it is unknown
if these findings apply to well trained athletes who
already maintain a high level of strength. Ad-
ditionally, it is not clear if a combination of loads
within 10–30% of 1RM of the ‘optimal’ load may
be more beneficial at enhancing maximal power
in subjects who are well trained. Further research
is also required to determine if adaptations are
influenced by whether the combination of loads
are used within a single set such as with complex
training, a single session or in separate training
sessions.

4. Velocity Specificity

The theory of velocity specificity in resistance
training suggests that adaptations following train-
ing are maximized at or near the velocity of move-
ment used during training.[20,40,140-144] However,
another theory exists in which training adaptations
are theorized to be influenced to a greater degree
by the intention to move explosively regardless of
the actual movement velocity.[18] These conflicting
theories have led to confusion surrounding the
appropriate selection of loads and exercises to utilize
during power training. Therefore, the development
of an effective power training programme must in-
clude consideration of the actual and intended ve-
locity of movement involved with training exercises.

4.1 Actual Movement Velocity

Research comparing isokinetic training at a
variety of different velocities has found a velocity-
specific response to training.[40,140-144] The results
of these investigations typically show that high-
velocity training produces greater improvements
in force and power at higher movement velocities
than those seen at low movement velocities. This
research also demonstrates that training with low
velocities results in increased force and power pre-
dominately at low movement velocities, with non-
significant changes at higher velocities.[140-144] Some
evidence also indicates smaller but significant im-
provements in force and power at velocities both
above and below the specific training velocity.[140,143]

Results of research comparing isoinertial load-
ing in single-joint movements have also indicated
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a velocity-specific response. Specifically, improve-
ments in both force and power output were most
pronounced at the velocities encountered in
training.[9,20] Less research is available examining
whether a velocity-specific response occurs fol-
lowing isoinertial training with dynamic, sports-
specific movements. McBride and co-workers[21]

observed subjects who trained with low velocities
using jump squats with 80% of 1RM to improve
performance at low and moderate velocities and
no changes in performance at high velocity. In
contrast, training with the higher velocity move-
ment of jump squats with 30% of 1RM resulted in
significant improvements in power across high,
moderate and low velocities. Furthermore, train-
ing with high movement velocities resulted in a
trend towards improved 20m sprint performance
while training with low velocities significantly
decreased sprint performance.[21] These results
suggest that the training did elicit some velocity-
specific adaptations that transferred to athletic
performance.

While the bulk of the current research indicates
the presence of a velocity-specific response, the
mechanisms responsible for this effect have not
been determined. A comparison of the results
from two studies conducted by Häkkinen and
associates[19,62] offer some insight into possible
mechanisms. High-velocity training involving
jump squats with 0–60% of 1RM resulted in a
24% improvement in isometric RFD and 38%
increase in the rate of onset in muscle activation
during an isometric knee extension.[19] In con-
trast, low-velocity training involving squats with
70–120% of 1RM did not affect either the iso-
metric RFD or rate of muscle activation onset
during the isometric knee extension.[62] These
findings suggest that velocity-specific adapta-
tions in the rate of neural activation contribute to
a velocity-specific response in RFD capabilities.
However, more recent research has reported that
both the RFD and the rate of neural activation are
enhanced in response to heavy strength training
that is performed at relatively low velocities.[123]

Specific adaptations to muscle architecture and
contractile mechanics may also contribute to
velocity-specific improvements in performance.
For example, Blazevich and colleagues[49] reported

pennation angle to decrease following high-velocity
training involving jumping and sprinting, and
increase in response to low-velocity training in-
volving heavy squatting. Due to the rotation of
fibres required during contractions in pennate
muscles, these architectural adaptations favour
high and low velocity of muscle shortening, re-
spectively.[49,145] Therefore, while it is possible
that neuromuscular adaptations to training are
specific to the actual velocity of movement, fur-
ther research is necessary to determine the precise
mechanisms driving velocity-specific adaptations.

4.2 Intention to Move Explosively

The theory that training with the intention to
move explosively determines velocity-specific
adaptations centres primarily on the findings of a
study by Behm and Sale.[18] The study involved
untrained, physical education students who trained
using unilateral ankle dorsiflexions for two
8-week training blocks separated by a 3-week
non-training period. One limb was trained with
isometric contractions, while the other limb was
trained using a high-velocity dynamic movement.
Subjects attempted to make maximal ballistic
dorsiflexion movements with both legs, being
specifically instructed to ‘‘attempt to move as
rapidly as possible regardless of the imposed
resistance.’’[18] When data were pooled across
both legs, the results indicated a velocity-specific
response in peak torque typically expected fol-
lowing training with a high-velocity movement.
Specifically, the greatest significant improvement
in torque occurred at the training velocity and pro-
gressively smaller increases were observed as the
velocity of movement decreased. No significant
differences in peak torque across any of the ve-
locities were observed between the isometric and
dynamically trained legs. Based on these findings,
the authors concluded that training with high-
velocity movements is not necessary to elicit high-
velocity-specific improvements in performance.
They hypothesized that improvements are in-
stead driven by the characteristic high rate of
neural activation associated with intended ballistic
contractions and the high RFD requirements
of such contractions regardless if the resulting
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movement is isometric or dynamic.[18] These
findings have not been attempted to be replicated
in a different exercise to ankle dorsiflexions, with
a similar subject pool of relatively untrained stu-
dents or with well trained athletes – a population
commonly expected to show more sensitive adap-
tations to training.[72,73] Investigations comparing
purposefully fast and slow movements with the
same load offers no further support or rejection of
this theory as these studies cannot delineate if
adaptations were due to the intention to move ex-
plosively or the ensuing higher velocity movement
of intentionally fast contractions.[87,146]

4.3 Actual versus Intended Movement
Velocity

Two different paradigms have been suggested
as the critical stimulus for velocity-specific adap-
tations, actual versus intended movement velocity.
Training with the intention to move explosively is
believed to influence adaptations to training and
is vitally important during power training irre-
spective of the contraction type, load or movement
velocity of the exercises used.[18,146] However, the
bulk of the literature indicates that velocity-specific
improvements in maximal power are more likely
elicited by the actual movement velocity utilized
during training.[9,19-21,40,49,62,140-144] Therefore, the
intention to move explosively and the actual
movement velocity are both vital stimuli required
to elicit neuromuscular adaptations driving per-
formance improvements following training. In
order to maximize the transfer of training to
performance, training should include loads that
allow for similar movement velocities to those
typically encountered in their sport. Additionally,
athletes should attempt to perform these exercises
as explosively as possible.

5. Window of Adaptation

The ability to generate maximal power is in-
fluenced by a multitude of neuromuscular factors
including muscle mechanics, muscle morphology,
neural activation as well as the muscle environ-
ment, and the interested reader should refer to
part 1[1] in this series of reviews for a detailed

discussion of these factors. The multifaceted
nature of maximal power production is reflected
in the variety of different training stimuli that
have been previously shown to effectively im-
prove maximal power in some individuals but not
in others. For example, heavy strength training
improved maximal power output in relatively
untrained subjects[22-24,32,85-88] but not in stronger
or more experienced athletes.[32,33] The magni-
tude of potential adaptations in maximal power
or the window of adaptation to training is heavily
influenced by the specific neuromuscular char-
acteristics of each individual athlete.[31] These
neuromuscular factors can be classified by a num-
ber of main components contributing to maximal
power production: slow-velocity strength, high-
velocity strength, RFD, SSC ability as well
as intra- and inter-muscular coordination and
skill.[31] As an athlete develops a certain compo-
nent and the associated neuromuscular factors to
a high level, the potential for further improve-
ments to contribute to increases in maximal
power diminish. Therefore, the window of adap-
tation for that component decreases. For ex-
ample, Wilson and associates[32] showed that
8 weeks of heavy strength training improved ver-
tical jump and sprint performance in weak in-
dividuals, but not already strong individuals (squat
1RM : body mass = 1.16 – 0.20 and 1.80 – 0.26,
respectively). As a result of a large window of
adaptation for maximal power development in
untrained individuals, they tend to respond to
virtually any type of training,[9,20,78,82,88] whereas
well trained athletes require much greater speci-
ficity and variation.[33] A training programme
that focuses on the least developed component
contributing to maximal power will prompt the
greatest neuromuscular adaptations and thus result
in superior performance improvements. Therefore,
it is vital to consider an individual’s window of
adaptation for each component contributing to
maximal power production when developing ef-
fective and efficient power training programmes.

6. Integration of Power Training Modalities

The concept of periodization has been endorsed
and used frequently to maximize long-term
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improvements in strength.[147-150] Through the
use of cycles within an overall programme, peri-
odization allows for variations in the intensity,
volume and specificity of strength training.[147-150]

This systematic approach to training is based on
the General Adaptation Syndrome, which de-
scribes the ability of the body to react and adapt
to stress.[151] When exposed to a new or more
intense stress, their initial response usually in-
volves a temporary drop in performance that is
classified as the alarm stage.[151,152] The resistance
phase represents the period in which the body is
going through the process of adapting to the sti-
mulus and is typically associated with improved
performance.[148,151,152] However, if the stress is
too great or continues for an extended period of
time, the desired adaptations are no longer poss-
ible. Under these circumstances the exhaustion
phase is reached and will result in a continued
decrease in performance associated with over-
training.[151,152] The variations involved with a
periodized strength training programme, which
include alterations in the load, volume and ex-
ercises selected, allow for athletes to continuously
adapt to training by moving from the alarm
phase to the resistance phase whilst avoiding the
exhaustion phase.[147-150] Therefore, the integra-
tion of various strength training techniques such
as hypertrophy, basic strength and strength/
power is commonly used to elicit superior long-
term improvements in maximal strength and
sports performance.[147-150]

Based on the same principle, there is a need
for the integration of power training modalities
(i.e. a periodized power training programme) if
long-term improvements in maximal power are to
be optimized.[31] Such an integrated approach
would, for example, allow for the use of tradi-
tional resistance training with heavy loads to
develop strength at slow velocities and RFD,
ballistic training with light loads to enhance high-
velocity strength and RFD, plyometric training
to improve SSC performance and sport-specific
technique training in order to advance inter-
muscular coordination and skill. While the use of
some of these methods will improve maximal
power and transfer to sports performance to a
greater degree in the short term, exclusive ex-

posure to a single power training modality ren-
ders inferior long-term developments due to the
exhaustion phase being reached.[30,151,152] It is
imperative that each of the modalities used in-
volve a degree of movement, load and velocity
specific to the requirements involved with the
athlete’s sport. Furthermore, programme design
must also specifically target the components of
maximal power with the greatest window of ad-
aptation for each athlete. A key limitation of
most of the literature examining improvements in
maximal power production following training is
the fact that interventions typically represent an
isolated mode of training monitored over a short
period of time. However, with the aforemen-
tioned considerations in mind, the neuromus-
cular adaptations resulting from an integrated
approach to power training are theorized to re-
sult in greater improvements in maximal power
production than any of these modalities used in
isolation.[31]

7. Conclusions and Implications

The ability to generate maximal muscular
power is considerably influenced by the indi-
vidual’s level of strength therefore enhancing and
maintaining maximal strength is essential when
considering the long-term development of power.
Strength training using traditional resistance
training exercises with heavy loads is therefore a
pivotal component of any athlete’s training pro-
gramme. In order to maximize the transfer of
training to performance, power training must
involve the use of movement patterns, loads and
velocities that are specific to the demands of
the individual’s sport. Ballistic, plyometric and
weightlifting exercises can be used effectively as
primary exercises within a power training pro-
gramme that enhances maximal power in dy-
namic, multi-joint movements common to many
sports. The loads applied to these exercises will
depend on the specific requirements of each par-
ticular sport and the type of movement being
trained. The use of ballistic exercises with loads
ranging from 0% to 50% of 1RM and/or weight-
lifting exercises performed with loads ranging
from 50% to 90% of 1RM appears to be the most
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potent loading stimulus for improving maximal
power in complex movements. Furthermore, plyo-
metric exercises should involve stretch rates as
well as stretch loads that are similar to those en-
countered in each specific sport and should involve
little to no external resistance. These loading con-
ditions allow for superior transfer to performance
because they require similar movement velocities
to those typically encountered in sport. The win-
dow of adaptation in maximal muscular power, or
the magnitude of potential for training-induced
improvement following different training stimuli
must be considered in light of the neuromuscular
characteristics of the individual athlete. Such
consideration will allow for the least developed
neuromuscular factors to be targeted and, there-
fore, the greatest potential for improvements
in maximal power output. The integration of
numerous power training techniques is essential
as it allows for variation within power meso-/
micro-cycles while still maintaining specificity,
which is theorized to lead to the greatest long-
term improvement in maximal power.
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