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I. Introduction

GH AFFECTS several tissues including liver, muscle,
kidney, and bone. GH effects on muscle and kidney

have recently been extensively reviewed in Endocrine Reviews
by Florini et al. (1) and Feld and Hirschberg (2). Since GH has
important effects on skeletal tissues, our focus in this article
will be on our current understanding of GH effects on bone.
A large increase in bone mass occurs during childhood and
puberty via endochondral bone formation. A gradual in-
crease in bone mass is then seen until peak bone mass is

reached at 20–30 yr of age. Subsequently, bone mass de-
creases with an accelerated bone loss seen in females after
menopause. Bone remodeling is regulated by a balance be-
tween bone resorption and bone formation. In this process
GH is known to play a role (3–7). A net gain of skeletal mass
due to new bone formation caused by GH was first shown
in adult mongrel dogs (8). After treatment with GH for 3
months a 2% increase in cortical bone mass, as assessed by
histomorphometry, was found.

Due to limitations in the supply of GH, a limited number
of animal and clinical studies were performed until the mid-
1980s when recombinant human GH became available. The
initial use of recombinant human GH was restricted to treat-
ment of growth-retarded GH-deficient (GHD) children.
However, it is now well established that GH also exerts
important effects in adults, and GH treatment of GHD adults
is now approved in several countries. Recent studies, in both
animals and humans, have demonstrated that GH exerts
potent effects on bone remodeling.

In this article we will discuss the role of GH in the process
of bone growth until peak bone mass is achieved and present
evidence that an increased endogenous production of GH or
treatment with GH might increase bone mass in adults. Re-
cent studies of the cellular mechanism of action for GH in the
regulation of bone growth are given in Section II. It is pro-
posed that GH stimulates longitudinal bone growth directly
by stimulating prechondrocytes in the growth plate followed
by a clonal expansion caused both by the GH-induced local
production of insulin-like growth factor I (IGF-I) and by a
GH-induced increase in circulating levels of IGF-I. However,
the main purpose of this article is to present recent data
indicating that GH is important in the regulation of bone
remodeling. Finally we will present a hypothetical model for
the mechanism of action of GH in the regulation of bone
remodeling and bone mass.

II. Effects of GH on Longitudinal Bone Growth

A. GH and regulation of postnatal longitudinal bone
growth

During the process of longitudinal bone growth, prechon-
drocytes in the germinal cell layer differentiate and thereafter
undergo limited clonal expansion in individual chondrocyte
columns in the growth plate. Subsequently, cells in the hy-
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pertrophic zone mature and degenerate and are eventually
incorporated into bone (9–12).

Several hormones are important for normal postnatal lon-
gitudinal bone growth, but it is generally accepted that GH
is the most important hormone in this respect. Furthermore,
it has been demonstrated that GH stimulates growth of car-
tilage and other tissues by increasing the number of cells
rather than by increasing cell size (11–14). A widely dis-
cussed question during the last two decades has been
whether GH acts on tissues directly, or whether the effect is
mediated by a liver-derived growth factor, initially called
sulfation factor, but later renamed somatomedin, and sub-
sequently shown to be identical to IGF-I. According to the
original somatomedin hypothesis, GH stimulates skeletal
growth by stimulating liver production of somatomedin
which, in turn, stimulates longitudinal bone growth in an
endocrine manner (15–17).

In the early 1980s the somatomedin hypothesis was chal-
lenged by a study demonstrating that injection of GH directly
into the rat tibia growth plate stimulated longitudinal bone
growth at the site of injection (18). This initial observation has
subsequently been confirmed and extended, and it is now
well documented that GH stimulates growth of many dif-
ferent tissues directly (19–34).

By studying the effects of GH and IGF-I in 3T3 preadipo-
cytes, Green and co-workers (35, 36) made the observation
that GH and IGF-I act on cells at different stages of matu-

ration. Thus, GH was found to stimulate young preadipo-
cytes, whereas IGF-I stimulated cells at a later stage of de-
velopment. The hypothesis by Green and co-workers (35),
that GH acts on progenitor cells and that IGF-I stimulates the
subsequent clonal expansion, was named the “dual effector
theory.” The finding that GH stimulates longitudinal bone
growth directly (18) and increases the local production of
IGF-I by stimulating transcription of the IGF-I gene (37) led
to the proposal that the dual effector theory of GH action is
valid for the regulation of longitudinal bone growth as well
(10). Subsequent in vitro studies using cultured epiphyseal
chondrocytes in suspension revealed that GH and IGF-I stim-
ulate cells at different stages of maturation. Thus, GH stim-
ulates the colony formation of young prechondrocytes,
whereas IGF-I stimulates cells at a later stage of maturation,
giving support to the hypothesis that cell maturation is in-
deed an important factor determining responsiveness of
epipyseal chondrocytes to GH and IGF-I (38–42). The hy-
pothesis that GH preferentially acts on chondrocyte progen-
itor cells in vivo is directly supported by another study from
our laboratory. By labeling slowly cycling prechondrocytes
with radioactive thymidine and studying the subsequent
labeling pattern in sagittal sections of the tibia growth plate
by means of autoradiography, the observation was made that
local injection of GH increased the number of labeled cells in
the prechondrocyte layer of the growth plate. In contrast,
IGF-I did not stimulate incorporation of radioactive thymi-

FIG. 1. The authors’ proposed mecha-
nism of action for GH and IGF-I in stim-
ulating longitudinal bone growth. The
different zones of the rat tibial growth
plate are indicated. GH stimulates lon-
gitudinal bone growth directly by stim-
ulating prechondrocytes in the growth
plate followed by a clonal expansion
caused both by the GH-induced local
production of IGF-I, and by a GH-in-
duced increase in circulating levels of
IGF-I. GH is the major determinant for
the stimulation of progenitor cells al-
though it is possible that IGF-I might
stimulate progenitor cells to some ex-
tent.
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dine in cells in the same layer (43). Using a histomorpho-
metric technique, it was found that GH as well as IGF-I has
the capacity to stimulate prechondrocytes, as both GH and
IGF-I reduced the cell cycle time of prechondrocytes. How-
ever, it was found in the same study that growth plate pre-
chondrocytes from GH-treated animals had a 50% shorter
cell cycle time compared with IGF-I-treated animals (44).
These data indicate that at least some of the growth-pro-
moting effect of GH is exerted via direct stimulation of pre-
chondrocytes.

B. Results supporting an important physiological role of
IGF-I for bone growth

Studies performed during the last 20 yr involving systemic
administration of IGF-I to GH-deficient animals and man
suggest that both IGF-I and GH have the capacity to stim-
ulate longitudinal bone growth in vivo (45–54). Elimination
of IGF-I and the IGF-I receptor by homologous gene recom-
bination have demonstrated that the IGF-I-signaling path-
way is very important for tissue development and growth.
Thus, mice with IGF-I deficiency show severe retardation of
statural growth that first becomes apparent at day 12 in
embryonic life, and subsequent postnatal growth is severely
retarded (55–58). IGF-I receptor “knock-out” mice are af-
fected more profoundly and die of respiratory failure early
postnatally due to poor development of respiratory muscles
(57). Furthermore, a patient with a deletion of the IGF-I gene
demonstrated intrauterine growth retardation and postnatal
growth failure (59). These experimental studies and the clin-
ical observation clearly demonstrate that a normal expres-
sion of IGF-I, as well as its receptor, plays a critical role for
normal growth and tissue development. However, these ex-
periments are unable to answer the question of whether
locally produced (autocrine/paracrine acting) IGF-I is more
important for normal tissue growth and development than
circulating (endocrine acting) IGF-I.

Several studies have shown that systemic administration
of recombinant IGF-I stimulates longitudinal bone growth as
well as body weight gain in hypophysectomized rats, giving
support to the theory that IGF-I has endocrine actions on
statural growth. Interestingly, administration of IGF-I par-
ticularly promoted the growth of nonskeletal tissues. Thus,
the effect of IGF-I on kidney, spleen, and thymus growth was
larger in magnitude compared with other tissues (46, 47, 60).
The quantitative difference in tissue response to IGF-I has
also been found in transgenic mice overexpressing IGF-I,
suggesting that IGF-I has particularly important functions in
nonskeletal tissues (61, 62). These data demonstrate that sys-
temic delivery of IGF-I has the capacity to increase growth
in animals.

C. Evaluation of the somatomedin theory vs. the dual
effector theory

The fact that both GH and IGF-I stimulate tissue growth
makes an analysis of the relative importance of the peptides for
this effect, in terms of spatial and temporal patterns, quite
complex. It seems justified to critically analyze available exper-

imental and clinical data and find out how available data fit into
the two different theories, the somatomedin theory and the dual
effector theory. The effect of systemic administration of GH and
IGF-I to hypophysectomized rats has shown that GH and IGF-I
have independent and differential functions (45, 46, 63). When
the two compounds are given together, they exert additive or
synergistic effects (45, 60, 64). Also, administration of GH to
animals treated with maximal doses of IGF-I stimulates growth
further (63). Furthermore, the differences between GH and
IGF-I are quite obvious in transgenic animals overexpressing
either GH or IGF-I. Thus, GH-transgenic animals grow to ap-
proximately twice the size of their normal littermates (62, 65).
In contrast, mice generated from a cross of mice overexpressing
IGF-I and mice lacking GH-expressing cells demonstrate an
increase in longitudinal bone growth and body weight when
compared with their GH-deficient controls. However, IGF-I
transgenic mice do not grow more than their nontransgenic
siblings (61, 66), demonstrating that overexpression of GH, but
not IGF-I, causes supranormal growth. Local administration of
GH, but not IGF-I, stimulates the local production of IGF-I by
stimulating the transcription of the IGF-I gene (22, 37), giving
direct experimental support to the notion that there is an in-
terplay between GH and IGF-I. Administration of antibodies to
IGF-I abolishes the stimulatory effect of locally administered
GH (31), supporting the theory that the locally produced IGF-I
has an important functional role in the expression of the effect
of GH at the site of the local tissue level (10, 67).

Treatment of GH insensitivity syndrome (GHIS) patients
with recombinant IGF-I has shown that IGF-I is quite effec-
tive in stimulating statural growth for 1–2 yr (49–51, 53, 54,
68–72), supporting the somatomedin theory. However,
available clinical data suggest that the effect of IGF-I subse-
quently becomes less effective, perhaps due to a decreased
rate of stimulation of prechondrocytes, a lack of GH- induced
IGF-binding protein 3 (IGFBP-3) and/or a suboptimal IGF-I
administration. However, from these clinical studies it is
difficult to make a general conclusion whether IGF-I stim-
ulates tissue growth by endocrine or autocrine/paracrine
mechanisms under physiological circumstances in the intact
organism. The question whether autocrine/paracrine or en-
docrine IGF-I is the more important factor for the stimulation
of tissue growth will probably not be solved until tissue
growth can be studied in transgenic animals with tissue-
specific gene deletions of IGF-I or the IGF-I receptor.

Taken together, available data suggest that GH stimulates
longitudinal bone growth directly by stimulating prechon-
drocytes in the growth plate followed by a clonal expansion
caused both by the GH-induced local production of IGF-I,
and by a GH-induced increase in circulating levels of IGF-I.
GH is the major determinant for the stimulation of progenitor
cells, although it is possible that IGF-I might stimulate pro-
genitor cells to some extent (Fig. 1).

III. Effect of GH in Vitro

A. Effects of GH in bone tissue cultures

Several in vitro models, developed to study the effects of
hormones and growth factors on bone remodeling, have
been presented, and some of these will be discussed in this
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section. They include different types of tissue cultures, os-
teoblastic cell lines, and primary cells. Bone tissue cultures
offer the advantage of preserved intercellular interactions,
thus presenting a more in vivo-like experiment compared
with isolated cell systems. In 1984 Stracke et al. (33) reported
that GH increased alkaline phosphatase (AP) activity in the
culture medium from embryonal rat tibias in tissue culture.
Furthermore, IGF-I was increased in the culture medium
after addition of GH to cultured tibias, indicating that GH
stimulated IGF-I production in the bone specimen. These
observations were later confirmed and extended by studies
of Maor et al. (26, 27). Pieces of cartilage isolated from the rat
mandibula were cultured on the top of collagen sponges in
the absence or presence of GH. Three-day incubation with
GH caused a marked increase in DNA synthesis and in the
size of the cartilage specimen. The effect of GH was even
more pronounced after 6 days in culture, at which time a
distinct network of trabeculae was noted throughout the
extracellular matrix. The trabeculae contained osteocyte-like
cells and were in close contact with both osteoblast-like and
osteoclast-like cells. Positive staining with antibodies against
bone-specific antigens, i.e., osteocalcin and osteopontin, pro-
vided further support for the notion that the newly formed
trabecular formation was comprised of bone matrix compo-
nents. Untreated control cultures lacked bone-like structures,
demonstrating that GH directly induced bone formation in
vitro (27).

B. Effects of GH on osteoblasts

1. GH directly stimulates osteoblasts. The effect of GH has been
studied in a number of osteoblastic cell lines and primary
isolated cells of various origin, including human, chicken,
rat, and mouse primary cells, and the SaOS-2 human and
UMR 106.01 rat osteosarcoma cell line. GH induces prolif-
eration of primary isolated rat (21, 73), mouse (74), chicken
(32), human (24, 75–78), and rat osteosarcoma cells (19, 79),
as well as cells from a rat osteoblast-like cell line (80) and
human osteosarcoma cells (75, 81) (Fig. 2). The effective con-
centrations of GH are in the physiological range (half-max-
imal stimulation at 10–50 ng/ml), suggesting that GH exerts
direct actions on osteoblasts. Not only does GH stimulate the
proliferation of osteoblasts, but, in some studies, it also stim-
ulates differentiated functions of these cells. Thus, typical
phenotypic functions of osteoblasts such as AP, osteocalcin,
and type I collagen are stimulated by GH (4, 21, 24, 74, 80,
82). For osteoblasts it is difficult to find a good model system
for the identification of the actual target cell of GH action.
However, bone marrow- derived precursors of human bone
cells are responsive to GH (76, 77), suggesting, in analogy to
the actions of GH in early progenitor cells in adipose tissue
and cartilage, that GH interacts with progenitor cells.

2. The role of IGF-I for GH action in osteoblasts. IGFs exert
anabolic effects on osteoblasts. IGF-II is expressed in both
rodent and human osteoblasts (83–86). IGF-I is produced by
rodent (87–90) osteoblasts while contradictory results have
been presented for human osteoblasts. Chenu and co-work-
ers (82), but not Kassem et al. (24), were able to detect sig-
nificant amounts of IGF-I in the culture medium from human
osteoblast-like (hOB) cells. Studies both detecting (85, 86, 91)
and not detecting (92) IGF-I mRNA transcripts in human
osteoblasts have been presented. Furthermore, an in situ
hybridization study demonstrated that osteoblasts in adult
human osteophyte tissue express the IGF-I mRNA transcript
(93).

Whereas circulating levels of IGF-I are GH dependent, GH
may not be the chief determinant of local IGF-I production
in bone. Thus, in vitro regulatory effects of estrogen, PTH,
and cortisol, as well as a variety of local growth factors, on
IGF I production have been demonstrated (86, 88, 94–102).
The regulation of local IGF-I by growth factors and hormones
is of potential clinical importance, but in this article only
GH-modulated effects in bone are discussed. A stimulation
of osteoblastic IGF production by GH has been demonstrated
by some authors (80, 82) but not by others (24, 83). To ex-
amine the importance of IGF-I as a mediator of GH action,
endogenous IGF-I was sequestered by an antiserum to IGF
in bone cell cultures. As a result, the proliferative action of
GH was abolished (21), indicating that local IGF-I is impor-
tant for GH-induced cell proliferation. In another study, by
Scheven et al. (75), it was demonstrated that GH induced
osteosarcoma growth but not growth of human osteoblast-
like cells when the cells were cultured in the presence of IGF-I
antibodies. In summary, GH induces IGF-I expression in
rodent osteoblasts, while the induction of IGF-I by GH in
human osteoblasts is uncertain.

The bioactivity of IGFs in bone tissue is modulated by
several IGFBPs, mainly IGFBP-3, -4, and -5 (103). Therefore,

FIG. 2. Effects of GH on [3H]thymidine incorporation in DNA of hu-
man osteoblast-like cells. Data are shown as mean 6 SEM (n 5 15).
Absolute value of the control cultures is 1950 dpm/ml. To illustrate the
statistical method used to analyze dose-response relationship, an
inset is included in this figure. For each cell strain tested, the log
dose-response relationship was described by a regression line. Inset
shows the slopes obtained in the 15 independent cell strains studied
plotted against their intercepts. Variations in slopes (along the y-axis)
represent differences in responsiveness to GH among various cell
strains. In hypothetical testing these slopes were tested for their
deviation from zero by Student’s paired t test. [Reproduced with
permission from M. Kassem et al.: Calcif Tissue Int 52:222–226, 1993
(24).]
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some of the GH effect may be mediated via a regulation of
the local production of IGFBPs in osteoblasts. It is well
known that GH treatment increases serum levels of IGFBP-3
(104–109), and the complex of IGF-I and IGFBP-3 is more
effective in stimulating cortical thickness in ovariectomized
(OVX) rats than IGF-I alone (110). IGFBP-3 is produced by
osteoblasts. GH increases IGFBP-3 production in rat cells (73,
96, 111, 112), while no effect of GH is seen on IGFBP-3
expression in human cells (24, 83, 113). IGFBP-4 was origi-
nally isolated from bone as the inhibitory IGFBP (114), while
IGFBP-5 is regarded as a stimulatory IGFBP for osteoblastic
proliferation (115–117). In rat, as well as in human osteo-
blasts, it was found that GH decreases IGFBP-4, as deter-
mined by ligand blotting (113, 118), while no effect of GH was
seen on IGFBP-4 protease activity in human osteoblast-like
cells (119). In primary rat osteoblasts, IGFBP-5 mRNA levels
were increased 2-fold after GH treatment (96). Interestingly,
a recent clinical study has demonstrated that GH treatment
increases serum levels of IGFBP-5 in GHD children (109).
Whether this effect of GH is a direct effect on osteoblastic
IGFBP-5 production remains to be shown. In conclusion,
there are some indications of a GH-induced regulation of
IGFBPs that potentially might have a regulatory role in bone
metabolism.

Many functions of GH can be exerted without prior syn-
thesis of IGFs. Thus, the expression of the protooncogenes
c-fos, c-jun, jun B, and c-myc are expressed in the presence of
protein synthesis inhibitors (120). Recently, using human
osteoblast-like cells, Melhus and Ljunghall (121) demon-
strated that different sets of genes were induced by IGF in
some cases and GH in others, indicating that these factors
have separate actions. In conclusion, it appears that some of
the effects of GH on osteoblasts are mediated by IGFs, but
others are not.

3. Regulation of GH receptor (GHR) expression. Barnard and
colleagues (19) were the first to show specific high-affinity
GHRs on osteoblast-like cells (UMR 106.06 cells). The pres-
ence of these receptors has been confirmed in primary iso-
lated cultured human (78) and mouse (122) osteoblasts. Se-
rum decreases the number of GHRs (79). In a search for the
factors in serum responsible for this reduction in GHR ex-
pression, it was found that IGF-I and -II decrease the number
of GHR in a dose- and time-dependent manner (123). This
decrease was accompanied by a decrease in the levels of
mRNA encoding the GHR. Similarly, the action of GH on
osteoblastic proliferation was decreased after preincubation
of the cells with IGFs (124). Conversely, it was found that
IGFBPs up-regulated GHR number and activity, possibly
through inhibition of IGF activity (123, 124) (Fig. 3). These
findings suggest a local feedback of the GH/IGF axis at the
tissue level. Thus, hypothetically, IGF decreases GHR num-
ber and activity, fine-tuned by the presence of IGFBPs (123,
125). Leung et al. have suggested that the negative feedback
of the GH/IGF-I axis in skeletal tissue might involve three
different mechanisms: a) liver-derived IGF-I inhibits pitu-
itary GH secretion, b) bone-derived IGF-I inhibits pituitary
GH secretion, and c) bone-derived IGF-I inhibits local action
of GH by reducing GHR availability (125) (Fig. 4).

Retinoic acid is another modifying factor for GHR expres-

sion. Similar to what was shown previously in embryonal
stem cells (126), it induces an increase in GHR number in
mouse osteoblasts (122). Estrogen is known to exert impor-
tant effects on bone tissue, and a recent study indicates that
estrogen interacts with GH action at the cellular level. In rat
and human osteoblasts, 17b-estradiol promoted GH-stimu-
lated proliferation and increased [125I]GH binding and GHR
mRNA levels (127). High levels of glucocorticoids induce an
increase in [125I]GH binding and GHR mRNA levels in rat
osteosarcoma cells and GHR mRNA levels in human osteo-
blasts (79, 128). In contrast, corticosteroids reduce [125I]GH
binding and GHR mRNA levels in primary isolated rat
growth plate chondrocytes (our unpublished data). In both
rat osteoblasts and in rat growth plate chondrocytes the effect
of GH was reduced by high levels of glucocorticoids.

In conclusion, a regulation of GHR expression in osteo-
blasts may be important for 1) a local autocrine feedback loop
in the GH/IGF-I axis and 2) for sex steroids, glucocorticoids,
and other factors modulating the effect of GH in osteoblasts.

4. GH signal transduction in osteoblasts. The GHR is a member
of the cytokine/hemopoietic growth factor receptor family
(129). GH signaling via its receptor has now been shown to
be mediated through cascades of protein phosphorylation
resulting in activation of nuclear proteins and transcription
factors. The GHR itself is not a tyrosine kinase. Instead, after
binding of GH to its receptor, an association with a protein,
JAK2, occurs. JAK2 is then phosphorylated and in turn phos-
phorylates the GHR (130–132). A number of signaling path-
ways may transduce the signal from this complex to the
nucleus. The first cascade is via STAT proteins (133–135),
which upon phosphorylation are translocated to the nucleus
and bind to DNA. Also, the Ras-Raf signaling pathway plays
a role in the GH-induced signaling (136, 137). IRS-1 and -2 are
also proteins functioning as signal transducers for the GHR
after they have been phosphorylated on tyrosine residues
(138–140).

In mouse osteoblasts, it has been shown that GH induces
the nuclear protooncogenes c-fos, c-myc, c-jun, and Jun-B
(120, 141). The formation of diacylglycerol was induced, and

FIG. 3. Regulation of GHR expression in rat osteosarcoma cells. Ef-
fects of IGF-I (100 ng/ml), IGF-II (100 ng/ml), IGFBP-2 (3000 ng/ml),
IGFBP-3 (3000 ng/ml), and IGFBP-5 (2000 ng/ml) on [125I]GH binding
and GHR mRNA expression in rat osteosarcoma cells. Values are
given as percent of control culture. [Figure is derived from Slootweg
et al. (123, 124).]
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the signaling was found to be dependent on a form of protein
kinase C. In these cells, the involvement of the phorbol es-
ther-sensitive transregulating transcription factor AP1 in
GH-induced gene transcription was demonstrated for the
first time (141).

In rat osteosarcoma cells, another signaling protein, an-
nexin 1, was detected recently as being tyrosine phosphor-
ylated upon stimulation of the cells with GH (142). The
tyrosine phosphorylation of this protein also occurs after
stimulation of cells with epidermal growth factor, pp60v-scr,
angiotensin II, and insulin (143). Although it appears as if this
is a general mechanism of signal transduction in cells, the
exact function of this protein is unknown, as is its place in the
already known signaling cascades (143).

C. Effects of GH on osteoclasts

GH increases the number of osteoclasts in the metaphysial
bone of the proximal tibia of hypophysectomized rats (25).
However, the mechanism for this effect is less clear. GHR
mRNA has been detected in mouse marrow cultures (144)
and in mouse hemopoietic blast cells (145). In a recent study
by Nishiyama et al. (145), using mouse stromal cells and
hemopoietic blast cells, it was found that GH stimulates
osteoclastic bone resorption through both direct and indirect
actions on osteoclast differentiation and indirect activation of
mature osteoclasts. Factors that may mediate the indirect
GH-regulated osteoclast formation include IGF-I and IL-6,
both of which are involved in osteoclast formation and have
been shown to be regulated by GH (33, 81, 145–149). It has
earlier been demonstrated that IGF-I supports activation and
formation of osteoclasts in cultures of unfractionated mouse
bone cells (146, 149) and that osteoblasts mediate IGF-I-stim-
ulated formation of osteoclasts in mouse marrow cultures
and activation of isolated rat osteoclasts (150). Furthermore,
human osteoclasts express functional IGF-I receptors (151).
In another study by Ransjö et al. (144), using mouse marrow
cultures, GH caused an inhibition of osteoclast formation by
an IGF-I-independent mechanism. In summary, available
data suggest that GH regulates osteoclast formation but both
stimulatory and inhibitory mechanisms have been pre-
sented, probably due to differences in culture conditions.
Future studies are necessary to improve the understanding
of the physiology of GH-induced effect on osteoclast.

IV. Effects of GH on Bone Metabolism in Animals

In vivo animal models are useful when evaluating the
influence of GH treatment on changes in bone mass, bone
metabolism, and mechanical strength of bones. For histolog-
ical analyses the models are excellent because it is possible
to perform static and dynamic histomorphometry and to
evaluate differences in regional response. Systemic GH ad-
ministration increases circulating levels of other hormones
that influence bone such as IGF-I and the active vitamin D
metabolite (1,25-(OH)2D3) (152, 153). Until now, systemic GH
administration has been used in nearly all animal experi-
ments, and it has been impossible to elucidate whether the
measured changes are caused by local or systemic (via cir-
culating IGF-I) GH stimulation. GHRs have been detected in
rat femur epiphyseal and calvarial osteoblasts using immu-
noreactive and mRNA techniques (80, 154). The effect of local
delivery of GH to bone has been studied in rats, and the
effects of local expression of GH in bone tissue in GH-trans-
genic mice have been presented. These recent studies, in vivo,

FIG. 4. Schematic representation of regulation of skeletal tissue by
GH and IGF-I. Y depicts GHRs. a, Classic negative feedback mech-
anism. In accordance with the somatomedin hypothesis, circulating
IGF-I derived from the liver in response to GH stimulates skeletal
tissue growth and feeds back centrally to inhibit pituitary GH secre-
tion. b, Modified classic negative feedback mechanism. In addition to
the endocrine effects of IGF-I derived from the liver, GH is able to
directly stimulate skeletal tissue growth through local production of
IGF-I. Hepatic and extrahepatic sources of IGF-I contribute to feed-
back inhibition of GH release. c, Proposed peripheral negative feed-
back loop. IGF-I produced by skeletal tissue in response to GH feeds
back to inhibit the local action of GH by reducing GHR availability.
[Figure is adapted from Leung et al. (125).]
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show that GH is able to stimulate bone formation via a direct
interaction with bone tissue (155–158).

A. Effects of GH deficiency and GH replacement on bone
parameters

Hypophysectomy (HX) of rats with subsequent replace-
ment with T4 and glucocorticoid is followed by a rapid and
pronounced decrease in the amount of metaphyseal and
vertebral body cancellous bone. Bone volume, trabecular
number, and trabecular thickness are decreased, and bone
formation is minimal (159–162). The cancellous bone resorp-
tion is also enhanced. Using tetracycline labeling, dynamic
histomorphometry demonstrates that bone resorption is en-
hanced after HX (161). The result is in accordance with the
previously observed decline in bone mass but perhaps un-
expected because static histomorphometric investigations
have clearly shown that HX decreases the number of oste-
oclasts and bone surface area covered by osteoclasts (25, 162).
Biochemical markers for bone formation are also decreased
after HX. Thus, circulating osteocalcin declines, and the
mRNA levels of osteocalcin and a1(I)-procollagen in the
bone are decreased (163, 164).

When GH is given to HX rats, increases in both bone
formation and the number of osteoclasts are seen (25, 161).
Correspondingly, an increase in serum osteocalcin and bone
mRNA levels of osteocalcin and a1(I)-procollagen is ob-
served (163–165). Furthermore, GH, but not IGF-II, increases
incorporation of radioactive thymidine and proline in femur
and tibia of HX rats (165). In bone from HX rats a decrease
in mRNA levels of IGF-I is found, and the levels are restored
after GH replacement (163). This observation strongly sug-
gests that GH has a direct effect on bone cells. However, the
bone content of IGF-I protein was not influenced by HX. In
summary, HX of rats results in a decreased bone formation
with a concomitant decrease in bone mass.

GH replacement therapy restores bone formation and
bone mass. Conflicting results have been presented regard-
ing the specific effect of GH on bone resorption after HX,
probably due to the fact that these animals are also lacking
gonadotropins and are sex steroid deficient. Thus, the dwarf
rat (dw/dw) with a normal pituitary function, except for GH
deficiency, is probably more appropriate for studying the
specific effect of GH deficiency. This animal model was re-
cently used in bone mass and metabolic experiments (166–
170). Cancellous bone volume, bone mineral density (BMD),
and serum AP are decreased in the dwarf rats, compared
with normal rats fed ad libitum and food-restricted animals,
although the food restriction caused growth retardation that
was similar to that in dwarf rats (169). Dwarf rats treated with
GH showed no difference in bone volume when compared
with normal animals, while BMD was decreased and serum
AP increased in these animals (169). In cortical bone from
these dwarf rats, GH treatment caused increased periosteal
bone formation and collagen deposition and a slight decrease
in BMD (170). Taken together, these studies support the
earlier observations in HX rats, i.e., that GH increases bone
formation and bone mass in GHD animals.

B. Effects of GH treatment on bone parameters of animals
with normal GH secretion

Normal rats have been used widely for studying the in-
fluence of GH on intact bone, and experiments have been
performed in young, adult, and old rats. However, in almost
all of these experiments GH administration has induced lin-
ear bone growth because the growth plates do not close until
the rats are very old (171). Therefore, the data have to be
evaluated in relation to both growth/modeling and remod-
eling (172, 173). The response pattern in rats should be com-
pared with the situation in primates (monkeys, humans),
which will be discussed later on in this section. In primates
the growth plates are closed after sexual maturation and
confounding factors, due to stimulation of bone growth and
bone modeling, are of less importance.

1. Effects of GH in rodents. GH administration increases cor-
tical bone mass in normal rats. Tetracycline labeling of the
mineralization front demonstrates that GH induces subpe-
riosteal bone formation without influencing the endosteal
bone surface (174–176) (Fig. 5). The new bone is organized
in a manner similar to that of adjacent bone that was formed
before the start of GH injection, i.e., in concentric lamellae
and with the same direction of the collagen fibers. After
withdrawal of GH administration, the subperiosteal bone
formation ceases quickly in areas with minimal bone forma-
tion before the start of GH treatment. A remaining effect of
GH, however, was found in areas where active bone forma-
tion occurred before the start of treatment. The new bone
formed during GH administration is preserved after discon-
tinuation of the treatment (176). Corresponding to the in-
creased bone mass, there is also an increase in mechanical
strength of the whole bone, and the mechanical quality of the
bone itself is almost the same in GH-injected animals as in
controls (175–177). The GH-induced subperiosteal bone for-
mation also shows regional differences. At the outer surface
around the lumbar vertebrae, new bone deposition is seen
whereas no effect of GH is observed at the surface of the
vertebrae toward the vertebral canal (178). GH also causes
formation of cavities inside the cortical shell of the vertebral
body in contrast to diaphyseal cortical bone in rats (178, 179),
suggesting that GH exerts site-specific effects on bone.

In all these experiments the GH-treated rats gained
weight. When GH was given during spaceflight, an increase
in subperiosteal bone formation was seen in rats under
weightless condition, and the amount of added bone was
similar to that obtained by GH administration on the ground
(180). This observation demonstrates that the increased bone
formation caused by GH treatment was not caused by the
increased mechanical stress due to the weight gain in the rats.

Cancellous bone mass of the vertebral body does not seem
to be affected by GH administration in normal old rats as no
differences in bone volume and bone surface/bone volume
have been found (178). Apart from increasing cortical bone
mass, GH also increases bone turnover. GH administration
increases serum osteocalcin and increases formation of bone
collagen in both cancellous and cortical bone as determined
by in vivo labeling with radioactive proline (181–183). Bone
resorption is also augmented, as shown by measuring ex-
cretion of pyridinolines and the specific marker [3H]tetra-
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cycline in rats labeled with [3H]tetracycline before GH treat-
ment (184). Because bone matrix is a major reservoir for
IGF-I, Yeh et al. measured the content of bone matrix IGF-I
after 9 weeks of GH treatment. However, these investigators

found no increase in bone matrix content of IGF-I in the
GH-treated animals (181).

Intermittent PTH injection to rats increases bone mass
primarily by inducing endosteal and cancellous bone dep-
osition, whereas the subperiosteal bone deposition is modest
(185, 186). When GH and PTH are given simultaneously, a
substantial increase in bone mass of vertebral bodies is seen
because the GH-induced subperiosteal bone deposition takes
place together with the PTH-induced endosteal and cancel-
lous bone deposition (187), suggesting that different treat-
ment protocols using combinations of PTH and GH might be
clinically useful.

In summary, these results from GH-treated rats with a
normal GH secretion clearly demonstrate that GH increases
cortical bone mass by inducing subperiosteal bone formation
while no large effect on cancellous bone mass is seen.

2. Effect of GH in transgenic mice. The creation of the first giant
GH-transgenic mouse in 1982 attracted considerable atten-
tion from scientists as well as the popular press (65, 188). The
extent of GH expression and tissue distribution of GH in the
transgenic mice depend on which promoter is attached to the
GH gene. In most bone metabolic studies, the metallothio-
nein promoter (MT) fused to the GH gene has been used,
resulting in very high serum levels of GH (188–194). How-
ever, two new GH-transgenic lines with a tissue-specific
expression resulting in high local concentrations of GH with-
out affecting serum concentrations of GH have recently been
described: 1) Baker et al. (158) used the osteocalcin promoter,
resulting in GH expression in osteoblasts; 2) Saban et al. (156)
used GH driven by b-globin regulatory-elements, resulting
in an erythroid expression with an “adult” expression in the
bone marrow.

The femora of MT-GH-transgenic mice with very high
serum concentrations of GH demonstrate an increased bone
growth, an increased BMC, no change in BMD (BMC/vol),
and an increased mechanical strength (188, 194). The increase
in mechanical strength was due to an increased cortical width
and not due to an improved quality of the bone. Rather, one
of the parameters measuring the quality of the cortical bone,
the E-module, was decreased in GH transgenic mice (194). It
should be emphasized that these mice have been exposed to
supraphysiological serum levels of GH (more than 10 times
increased) from late prenatal life (194). Interestingly, dispro-
portionate skeletal gigantism has been found in adult MT-
GH-transgenic mice, suggesting that supraphysiological GH
levels exert differential effects on different parts of the skel-
eton (189). These studies in GH-transgenic mice with in-
creased serum concentrations of GH give support for the fact
that GH increases cortical bone formation, resulting in an
increased mechanical strength of the bone. However, the net
result on bone mass in old MT-GH-transgenic mice is also
highly dependent on bone growth and bone modeling.

The erythroid-specific GH-transgenic mice had increased
cortical bone thickness, and the authors suggested that the
local effect of GH from erythroid cells in the bone marrow is
a major contributor to the increased bone deposition in these
GH-transgenic mice (156). However, a slight increase in se-
rum levels of GH was seen, indicating that some of the effect
of GH may have been systemic. In the osteoblast promoter-

FIG. 5. GH increases periosteal bone formation in old male rats with
a normal GH secretion. The rats were given GH (2.7 mg/kg/day) for
80 days. All animals were labeled with tetracycline on days 41 and 69.
Only in the GH-treated group was subperiosteal tetracycline double
labeling seen. Cross-sectional appearance of the femur diaphysis from
a rat given GH for 80 days. A, The unstained cross-sectional appear-
ance using light microscopy. The area inside the frame is shown using
light microscopy (B) and epifluorescence microscopy (C). The two
tetracycline-labeling lines (days 41 and 69) are marked by arrows.
Bone formation also takes place from day 69 until animals are killed
(distance between labeling line day 69 and periosteal border). [Re-
produced with permission from T. T. Andreassen et al.: J Bone Miner
Res 10:1057–1067, 1995 (176).]
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driven GH-transgenic mice the femora demonstrated an in-
creased growth, increased cortical width, and an increased
mechanical strength (157, 158). Similar to the situation in the
MT-GH-transgenic mice the quality of the bone, as measured
with the E module, was decreased (157, 194). As the serum
levels of GH were not increased in these GH-transgenic mice,
it was concluded that the stimulatory effect on bone forma-
tion was caused by local effect of GH.

GH-transgenic mice have also been used as a model to
study the functional interaction between male and female sex
steroids with increased expression of GH. It was found that
preserved gonadal function was a prerequisite for the in-
crease in bone mass caused by overexpression of GH (192,
193).

3. Effects of GH in primates. As discussed above, GH exerts
potent effects in rodents, resulting in an increased bone for-
mation. However, it is possible that some of these effects are
due to bone growth and bone modeling, as rodents close the
epiphyseal plate late in life. The monkey is a primate and the
bone metabolism in these animals is more similar to that of
humans. The effect of GH has been studied in hypogonadal
female monkeys. The monkeys were made hypogonadal by
treatment with a GnRH agonist for 10 months, resulting in
a 12% decrease in BMD (BMC/area). GH supplementation
(100 mg/kg/day) reduced the decline of BMD in GnRH ag-
onist-treated monkeys (195). A recent study, using old female
monkeys, demonstrated that GH (100 mg/kg/day), but not
IGF-I (120 mg/kg/day), given for 7 weeks increased bone
formation as measured with mineral apposition and bone
formation rates (196) (Fig. 6). No additional effect was seen
when IGF-I was given together with GH. The effect was seen
both in the tibia and in the femur whereas no significant
effect was seen in the vertebrae. The difference between the
long bones (predominantly cortical bone) and the vertebrae

(predominantly cancellous bone) in terms of GH responsive-
ness is similar to what has been described earlier in old rats.
These experimental studies of primates are promising for
future human clinical studies. However, further long-term
studies with GH treatment of primates are needed to eluci-
date whether the increased bone formation results in an
increased bone mass and mechanical strength.

4. Effects of GH in OVX animals. Ovariectomy in rats results
in a substantial loss of cancellous bone and an increase in
bone turnover rate (197–199). In cortical bone, ovariectomy
results in enhanced resorption at the endosteal surface,
whereas bone formation at the periosteal surface initially
increases, but thereafter reacts as seen in intact animals (200–
202). OVX rats have been accepted as an animal model of
postmenopausal bone loss and the current FDA “Guidelines
for preclinical and clinical evaluation of agents used in the
treatment or prevention of postmenopausal osteoporosis
(1994)” recommend that new potential agents first should be
evaluated in the OVX rat model (203–205). As GH is a po-
tential anabolic agent, there have recently been a number of
studies in which GH was given systemically to OVX rats (187,
206–209). GH increases cortical bone mass by inducing sub-
periosteal bone formation (187, 207). In the OVX model,
where cancellous bone mass is normally measured in the
tibial metaphyses or inside the vertebral body shell, the re-
sults show an increase in bone volume, bone surface/bone
volume, mineralizing surface, osteoid surface, and osteoclas-
tic surface in response to GH treatment (187, 206, 208). In
addition, the mechanical strength of the vertebral body is
increased and correlates well with the increase in bone mass
(187, 210). The results of GH treatment on cancellous bone
seems rather promising, but it must be emphasized that GH
also stimulated linear bone growth, which makes the inter-
pretation of the results difficult. At present, it is not known
whether there is any relationship between linear growth and
an increased cancellous bone volume in this model. GH was
unable to augment cancellous bone volume in old rats that
do not show linear growth, although GH increased cortical
bone mass considerably in these animals (176, 178). In OVX
rats the bone metabolism is enhanced, and no further in-
crease in pyridinolines excretion, circulating osteocalcin and
cancellous bone osteoid, or mineralizing surfaces has been
observed after treatment with a low dose of GH (209).

These studies, using OVX rats, indicate that GH alone or
in combination with another hormone may be useful in the
treatment of postmenopausal osteoporosis. However, fur-
ther studies need to be performed in old OVX rats and
primates with closed growth plates.

5. Effects of GH in animals treated with glucocorticoids. In rats,
rabbits, and dogs, glucocorticoid treatment has been shown
to decrease bone formation and bone mass (211–214). The
effects, however, vary with species and in the rat model low
doses of glucocorticoids increase bone mass and mechanical
strength of bone whereas higher doses decrease bone for-
mation, bone mass, and bone strength (215–217). In mice,
simultaneous administration of GH and glucocorticoids pre-
vents the catabolic effect of glucocorticoids whereas this does
not seem to be the case in rats. However, the number of

FIG. 6. Histomorphometric study of effect of GH and/or IGF-I treat-
ment in old female monkeys. GH (100 mg/kg/day) but not IGF-I (120
mg/kg/day) given for 7 weeks increased bone formation in the tibia as
measured with mineral apposition rate and bone formation rate. No
additional effect was seen when IGF-I was given together with GH.
Mineral apposition rate was measured as micrometers per day, and
bone formation rate was measured as cubic micrometers per mm2/yr
with a surface referent. Values are means 6 SEM of control. *, P , 0.05
vs. control. [Figure is derived from Ref. 196.]
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experiments is still very limited, which is why the interpre-
tation should be cautious. Using mice, Altman et al. (218)
showed that glucocorticoids caused a decline in linear bone
growth, trabecular bone volume, cortical bone width, min-
eral bone content, and bone alkaline- and acid-phosphatase
activity. The observed declines in different bone parameters
were inhibited when glucocorticoid and GH were given si-
multaneously. The results correspond well with histological
data obtained in a trial in children when GH and glucocor-
ticoid were given either separately or simultaneously (219).
In rats a short dose-response study showed that GH is able
to prevent glucocorticoid-induced growth inhibition (220). In
long-term experiments, however, GH does not seem to coun-
teract the glucocorticoid-induced decline in linear growth,
bone formation, and bone mass, although GH alone increases
these parameters (179, 221).

C. Effects of GH on fracture healing

When movements between the ends of a fractured bone
are possible, bone healing is initiated by formation of a thick
periosteal callus of woven bone with a central area of car-
tilage. Through endochondral ossification the cartilage is
subsequently replaced by woven bone. Later in the healing
phase, a marked modeling takes place and hereby the callus
volume declines and the density is enhanced (222, 223). As
GH stimulates both periosteal bone formation and linear
growth where bone formation takes place by endochondral
ossification, it has been natural to examine the effect of GH
treatment on healing bones.

In rats, GH administration increases callus formation and
mechanical strength of healing fractures (224–229). The en-
hanced rate of healing continues after withdrawal of GH
(230, 231). A considerable delay in mechanical strength de-
velopment of healing fractures is seen in old rats and GH
treatment partly prevents this delay (232, 233). Augmented
callus formation is found in the rat bone defect model, when
GH is administered both systemically and locally (155). GH
has not previously been applied locally either to intact bone
or healing fractures, and the data imply that GH exerts a
direct, non-liver-mediated effect on bone tissue (155). In
studies in which rats were used, only a few papers show no
effect of GH on healing bone defects and fractures (234, 235),
and GH has not been able to stimulate formation of new bone
in titanium bone conduction chambers (236).

In rabbits, GH has not been able to increase callus forma-
tion or mechanical strength in healing fractures and bone
defects (234, 237–239). However, when subperiosteal bone
formation was induced by applying a cerclage band around
the femur, GH was able to enhance bone formation in rabbits
(240).

In dogs, GH administration augments callus formation in
bone defects, and in human trials GH treatment stimulates
healing of fractures and pseudoarthroses, when evaluated by
radiographs and clinical examination (241–244).

In summary, GH treatment in rats obviously increases
callus formation and the mechanical strength of healing
bones, whereas the response in the rabbit model seems to be
much weaker. At present, it is not possible to evaluate
whether GH treatment has any role in human fracture heal-

ing because only a few clinical trials and experiments in
higher animals have been performed.

V. Effects of GH on Bone Metabolism in Humans

A. Bone metabolism in patients with acromegaly and GH
deficiency

1. Acromegaly. Active acromegaly has consistently been as-
sociated with increased bone turnover (245–252). In a study
of 16 acromegalic subjects, osteocalcin concentration was
increased 2-fold, and urinary excretion of hydroxyprolin in-
creased 3-fold compared with control subjects (251). The
serum concentration of osteocalcin is positively correlated to
GH and/or IGF-I concentration (252). Successful treatment of
these patients normalized serum osteocalcin and the urinary
excretion of hydroxyproline (252, 253). Octreotide treatment
reduced osteocalcin concentration but not type I procollagen
(PICP) (254). The net effect of the increased bone metabolism
in untreated acromegaly has been obscured in some studies
by confounding factors such as hypogonadism (255). In fact,
many years ago acromegaly was seen as a cause of osteo-
porosis (256) whereas later studies revealed normal or more
often increased bone mass in patients with acromegaly with-
out gonadal insufficiency (251, 255, 257–261). The trabecular
bone density of the lumbar spine in patients with acromegaly
was decreased in one study, as determined by quantitative
computerized tomography, while it was increased in another
study using dual energy x-ray absorptiometry (DEXA) (246,
262). In contrast, bone histomorphometric investigations in
patients with acromegaly disclosed a significant increase in
both cortical and trabecular bone mass in iliac crest. In tra-
becular bone, resorption surfaces and active and total for-
mation surfaces were increased (249). BMD assessed with
DEXA was increased in the proximal femur whereas the
BMD of the lumbar spine was similar to that of healthy
controls (251). In summary, most studies suggest that cortical
bone mass is increased in acromegaly (4, 5, 249, 251, 255, 260,
262) whereas trabecular bone seems largely unaffected.

2. GH deficiency (GHD). There is no conclusive data on the
effects of GHD on bone remodeling in adults. Serum levels
of osteocalcin, reflecting osteoblast activity and bone forma-
tion, have been found to be decreased (263–267), increased
(268), or unchanged (269). Most studies have shown that
there is no difference in resorption markers between controls
and adult GHD patients (264, 268, 270).

a. Bone mass in adult patients with childhood-onset GHD. In
children with GH deficiency, a relative osteopenia is found
before the start of exogenous GH treatment, an effect that
might be due to a delay in skeletal maturation (271–273).
Several studies have shown low bone mass in adults with
childhood-onset GHD (268, 273–280). In a cross-sectional
study of 30 young adult males, with childhood-onset GHD,
Kaufman et al. (273) found decreased bone mineral content
in the lumbar spine and forearm compared with age- and
height- matched controls. The BMC in the lumbar spine was
shown to be between 9 and 19%, and in the forearm 20 and
30% lower compared with controls, using dual- and single-
photon absorptiometry, respectively. A similar decrease in
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BMC was observed in patients with multiple pituitary de-
ficiencies and isolated GHD. These observations were re-
cently confirmed by de Boer et al. (275) who performed a
similar cross-sectional study in 70 adult men with childhood-
onset GHD. This investigations found that the BMD area
(BMC/bone area) in GHD patients was significantly reduced
at the lumbar spine as well as the nondominant hip. In fact,
in 33% of the patients the lumbar spine BMD area was at least
2 sd lower than normal. They also observed a positive re-
lationship between body height and BMD area. Patients and
controls differed in body height, which partly explained the
difference in BMD area. However, also after correction for
bone size, the difference in BMD area between patients and
controls still remained. Similar results were obtained in pa-
tients with multiple pituitary deficiencies and isolated GHD.

The similar results observed both by Kaufman et al. and de
Boer et al. in patients with multiple pituitary deficiencies and
isolated GHD suggest that lack of GH is the most important
factor behind the observed low bone mass in childhood onset
GHD (273, 275). A reported reduction in vertebral trabecular
bone density assessed by CT technique in 10 males with
childhood-onset isolated GHD further supports this conclu-
sion (274). There is no evidence suggesting that bone loss is
enhanced after cessation of GH treatment in young adults
(273). Thus, it is conceivable that insufficient acquisition of
bone mass during childhood and thus reduced peak bone
mass explain the reduced BMC and BMD observed in these
patients. The cause of the reduced bone mass is probably
suboptimal GH therapy in these patients. Patients included
in the cited studies were mainly treated with GH when the
supply of GH was limited, and the doses used were lower
and cessation of treatment occurred earlier than current pe-
diatric practice. In patients with hypopituitarism of child-
hood onset, the induction and timing of puberty are also
important in reaching the optimal peak bone mass. Boys with
constitutionally retarded puberty will achieve a lower peak
bone mass than boys with puberty of normal onset (281). At
present there are no studies showing that GH replacement
during childhood results in a normalization of BMD when
peak bone mass is reached, suggesting that GH also is im-
portant for the additional increase of bone mass that occurs
after completion of linear growth. It has been suggested that
GH treatment should be continued until the attainment of
peak bone mass, irrespective of the height achieved (282).

b. Bone mass in adult patients with adult onset GHD. An
increased prevalence of osteoporosis has been found in sev-
eral recent studies of patients with adult-onset GHD (283–
289). In a population of 122 hypopituitary patients, Wüster
et al. (283) observed that 57% of the patients had low bone
mass of lumbar spine as assessed with dual photon absorp-
tiometry, and 73% of the patients had low bone mass of the
proximal forearm as assessed with single photon absorpti-
ometry. Johansson et al. (284) studied 17 adult GHD men and
found that total, but not spinal, BMD, measured with DEXA,
was lower in the patients compared with controls. In a study
by Rosén et al. (286) of 95 (55 males and 40 women) patients
with adult-onset GHD with a mean age of 54 yr, BMC was
assessed in the third lumbar vertebra with dual-photon ab-
sorptiometry. The control population comprised 214 women
aged 35–80 yr and 199 men between 16 and 79 yr of age. BMC

was found to be lower in all males and in females with
untreated as well as treated gonadal deficiency. BMC was
lower in patients below 55 yr of age and normal in patients
above 55 yr of age. Holmes et al. (287) measured vertebral
trabecular BMD with quantitative computed tomography
(QCT), total BMD and BMD in lumbar spine and hip with
DEXA, and BMC in the forearm with single photon absorp-
tiometry (SPA) in adult patients with GHD. There was a
highly significant reduction in QCT and in DEXA of the
lumbar spine and in SPA of the forearm in these patients.
Similarly, as has been shown in patients with childhood-
onset GHD, there was no difference in Z-scores between
those patients with isolated GH deficiency and those with
GH and gonadotropin deficiency. In a subgroup analysis of
patients with an estimated age above 30 yr at the onset of the
disease, a reduction was still present in QCT and in DEXA
of the lumbar spine, and in SPA of the forearm. Interestingly,
older adults had less reduction in bone mass than younger,
confirming the observation by Rosén et al. (286, 287). In a
cross-sectional study comprising 64 hypo-pituitary patients,
Beshyah et al. (288) demonstrated a significant reduction in
lumbar spine BMD and BMC in both male and female pa-
tients compared with controls. The area and the width of the
vertebra were similar in patients and controls. In contrast,
Degerblad et al. (289) observed normal total, spine, and hip
BMD in males with adult onset GHD and Kaji et al. (290)
found a normal BMD in the spine and midradius of patients
with adult onset GHD. However, Degerblad et al. (289) found
low total, spine, and hip BMD in women with adult onset
GHD. A recent study in elderly patients (over 60 yr old) with
adult-onset GHD demonstrated normal BMD in the hip and
the lumbar spine (291). In summary, most studies demon-
strate that patients 55 yr of age or less with adult-onset GHD
have decreased bone mass.

c. Fracture rate in GHD patients. Few studies have investi-
gated whether or not GHD patients have an increased frac-
ture rate. The reasons for this are probably that a huge num-
ber of GHD patients are required for a meaningful study
and/or that additional pituitary hormone deficits may con-
found the results. However, an increased risk of osteoporotic
vertebral fractures has been suggested in hypopituitary pa-
tients (283). The consequences of low BMD in GHD adults
have only recently been delineated by Rosén et al. (292) who
found a higher fracture rate in patients with adult-onset
GHD compared with that in healthy controls. The fracture
rate was studied in 107 patients with adult-onset GHD, and
a subsample of the Göteborg WHO MONICA Study was
used as a reference population. The total fracture frequency
was 2- to 3 times higher in the patients compared with the
controls. Confounding factors such as longstanding un-
treated hypogonadism might have contributed to the low
bone mass in some subjects, since most of the studied pa-
tients also had other pituitary deficiencies. On the other
hand, Holmes et al. (287) found a similar reduction in bone
mass in patients with isolated GHD and in those with mul-
tiple pituitary deficiency. Since peak bone mass may not be
reached until the third or fourth decade of life (293), failure
of accretion of bone mass may also be partly responsible for
the reduced BMD in adult-onset GHD. Again, since patients
who acquired their GHD after the age of 30 also have reduced
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bone mass, it is likely that GH per se is important for the
maintenance of the adult bone mass (287).

3. Treatment of GHD patients with GH. GH treatment of GHD
adults has consistently been shown to have marked effects on
markers for bone formation [serum osteocalcin, serum levels
of C-terminal propeptide of PICP, and AP] and bone resorp-
tion [urinary hydroxyproline, collagen cross-links, and se-
rum concentrations of collagen type I telopeptide (CITP)] and
serum IGF-I levels (263, 266–270, 279, 289, 294–309). There is
a dose-dependent increase of bone markers during GH treat-
ment (266, 309), and the increase in resorption- and formation
markers was maximal after 3 and 6 months, respectively (300,
304). The similarity in time courses of the bone markers
supports the concept of a temporal coupling between bone
resorption and bone formation, with resorption preceding
formation during bone remodeling (300). After 2 yr of GH
treatment these markers were still elevated, suggesting that
the increased rate of bone remodeling was sustained (304).
An increased bone turnover and an increased cortical thick-
ness, as studied by histomorphometric indices, was found
after GH treatment in a study of GHD men (310). Similarly,
increased bone turnover has been observed in patients with
long-standing acromegaly (251), indicating that bone turn-
over can be elevated for many years as a result of high plasma
levels of GH. Furthermore, indices for bone formation re-
main elevated for several weeks after short-term treatment
with GH, suggesting that the half-life for processes reflecting
bone resorption/formation is quite long (302, 311). Admin-
istration of GH to healthy volunteers for 7 days produced no
discernible effect on serum calcium concentration, but uri-
nary calcium excretion increased. Serum PTH concentrations
increased, as did the concentrations of phosphate and 1,25-
dihydroxyvitamin D (312). In contrast, in other double blind,
placebo-controlled trials (6 months duration) of adult GHD
patients, no effect on 1,25-dihydroxyvitamin D concentra-
tions (313) and no effect (313) or a decrease (296) in intact PTH
concentrations was found. These changes were accompanied
by a concomitant increase in total serum calcium concentra-
tions (296, 313). A similar increase in serum calcium con-
centrations has been observed by others (297, 299, 300). Still,
after 2 yr of GH treatment, serum calcium concentration was
elevated compared with baseline (304). GH may enhance
1a-hydroxylase activity (314), thus increasing the concentra-
tion (315) or availability (316) of vitamin D3, which is con-
ceivably the mechanism behind the sustained increase in
serum calcium concentration. An alternative hypothesis is
enhanced mobilization of skeletal calcium due to increased
bone turnover.

Trials involving adults with childhood onset GHD have
yielded conflicting results regarding the effect of GH on bone
mass. Several short-term placebo-controlled (306–308) and
short-term open trials (268, 278, 294, 299) have failed to show
any increase in BMD or BMC during GH treatment. In fact,
some of these studies (299, 306, 307) reported a slight de-
crease of BMD or BMC after 3–6 months of treatment. In
contrast, O‘Halloran (274) reported an increase in vertebral
BMD assessed with QCT after 6 months of GH treatment but
no changes in proximal or distal forearm BMC. After more
prolonged treatment periods (12–30 months), several studies

have disclosed more encouraging results (274, 305, 307, 317).
Degerblad et al. (317) showed an increase in distal and prox-
imal forearm BMD in six patients by 12 and 3.8%, respec-
tively, after 24 months of treatment. Similarly, Vandeweghe
et al. (307) reported a significant and progressive increase in
BMC above pretreatment values, reaching 7.8% for total
BMC at the lumbar spine and 9.9% for total BMC at the
forearm, after 30 months of GH administration.

Short-term trials of 6–18 months in adults with adult onset
GHD (263, 289, 297, 298, 300) failed to show any increase in
BMC or BMD. In analogy with the findings observed in
adults, with childhood onset GHD, several studies have
shown a decrease in BMD and or BMC after 6–12 months of
treatment. Holmes et al. (263) observed a decrease in BMD
after 6 months of treatment at several skeletal sites. After 12
months of treatment, however, there was only a significant
reduction in lumbar spine BMD. Similarly, Degerblad et al.
(289) showed a decrease in total body and lumbar spine BMD
after 6 months of GH treatment, but after 12 months of GH
treatment there were no differences compared with baseline
values. Furthermore, Hansen et al. (300) showed that in a
placebo-controlled trial of 12 months, a decline occurred in
forearm BMC and BMD by 4.2 and 3.5%, respectively. In
contrast, in the longest placebo-controlled trial reported so
far (18 months), Baum et al. (295) reported a significant in-
crease in BMD in lumbar spine and femoral neck of 5.1 and
2.4%, respectively, using a daily dose of GH of only 4 mg/kg.
Surprisingly, BMD increased at sites mostly composed of
trabecular bone but not at sites composed of cortical bone.
Since bone absorptiometry only detects the mineralized com-
ponent of the bone, the reduction in BMD observed after
short periods of GH treatment is best explained by the in-
creased remodeling activity, with an increased remodeling
space and an increased proportion of new unmineralized
bone. Interestingly, the addition of a bisphosphonate to GH
therapy in GHD adults reduced the GH-induced bone turn-
over and prevented the initial decrease in bone mineral con-
tent seen during GH treatment alone (318). Therefore,
bisphosphonates might perhaps be an important adjunct to
GH replacement therapy in adults with GHD and severe
osteopenia during the early phase of GH treatment. How-
ever, if bone resorption is a prerequisite for bone formation,
it is possible that an initial GH-induced bone resorption is
crucial for the following GH-promoted bone formation.

Johannsson et al. (304) recently demonstrated that 2 yr of
GH treatment in 24 men and 20 women with adult-onset
GHD induced a sustained increase in overall bone remod-
eling activity and a net gain in BMD in several weight-
bearing skeletal locations (Fig. 7). A significant increase in
BMD first became apparent after 18 months, which might
explain why previous trials of shorter duration were unable
to demonstrate an increase in BMD. The study also demon-
strates the importance of an adequate duration of treatment
to include a sufficient number of remodeling cycles and
sufficient time for mineralization to occur before a net gain
in BMD can be detected with bone absorptiometry. After 2
yr of GH treatment, the total body BMC increased but not the
total body BMD. Furthermore, the increment in BMC was
slightly more marked than the increment in BMD at the
different skeletal loci, suggesting that there was an increase
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in the bone area. A similar increase in bone area after GH
treatment of rats has been described in detail in Section IV.
Interestingly, patients with a z-score of less than 21 sd dem-
onstrated the most pronounced increase in BMD (Fig. 7),
reducing the calculated number of patients with the greatest
fracture risk by 40–50%, dependent on skeletal loci. How-
ever, this calculation is based on the assumption that the
changes in quality of bone in GHD adults are similar to what
was earlier described in postmenopausal women. Further-
more, it should be emphasized that half of the patients in the
study by Johannsson et al. (304) were given a supraphysi-
ological GH dosage, which resulted in abnormally elevated
IGF-I levels (304). This study suggests that the remodeling
balance during GH treatment in GHD adults is positive,
particularly in those with a low pretreatment BMD. This is
supported by a study demonstrating a continuous increment
in forearm cortical BMC 13 months after the discontinuation
of GH treatment (319).

A gender difference has also been observed in response to
GH. Thus, males responded with a higher increase in serum
osteocalcin, PICP, and CITP concentrations, whereas women
increased more in total BMC and BMD. This suggests that the
interaction between GH and estrogens induces a more pos-
itive remodeling balance with less increment in bone-remod-
eling activity than the interaction between GH and andro-
gens (304).

B. Effects of the GH/IGF-I axis on bone metabolism and
bone mass in patients with normal GH secretion

1. Osteoporosis. The causes of osteoporosis are complex and
multifactorial. Bone mass decreases with aging, but the
mechanisms behind this decrease are unclear. Aging is as-
sociated with a decrease in GH secretion (320, 321) and serum
IGF-I concentration (322). The GH/IGF-I axis is also influ-
enced by lifestyle factors. For example, smoking decreases

IGF-I while physical activity increases GH secretion (322). It
has been suggested that the GH/IGF-I axis is one of the major
determinants of adult bone mass (323, 324). Thus, a positive
relationship between BMD and serum concentrations of
IGF-I and IGFBP-3 was observed in healthy men (325). Fur-
thermore, in a study of 245 healthy elderly women, serum
IGF-I concentration was found to be an independent pre-
dictor of total BMC (326). Circulating levels of IGF-I have
been reported to be significantly lower in men (327) and
women (328) with osteoporosis. In addition, low plasma
levels of IGF-I and IGFBP-3 were found in both male and
females with osteoporosis (329), and a relationship has been
shown between baseline IGF-I and femoral bone density in
women over 70 yr of age (326). Furthermore, IGF-I concen-
trations are decreased in the skeletons of elderly patients,
suggesting that the normal age-dependent decrease in bone
mass may be due to a local IGF-I deficiency in the skeleton
(330). In contrast, no differences in serum levels of IGF-I,
IGF-2, or IGFBP-3 were observed between women with os-
teoporosis and normal age-matched controls (331, 332).

Several studies have demonstrated that GH increases
markers for bone resorption as well as bone formation in
subjects with a normal GH secretion. GH increases bone
turnover in young healthy male volunteers (311) (Fig. 8) as
well as in osteopenic postmenopausal women (333). Osteo-
porotic patients display similar responsiveness to GH as
healthy subjects in the regulation of bone markers for bone
formation and bone resorption (334). In a small study in
which three patients with primary and secondary osteopo-
rosis were treated with GH, an increase of periosteal new
bone formation, as determined with bone histomorphom-
etry, was seen (335). This increase in periosteal bone forma-
tion is interesting as it is similar to what has been found in
experimental studies (176). However, larger clinical studies
with bone histomorphometric analyses are needed to con-

FIG. 7. BMD (BMC/area) in response
to 2 yr of GH treatment in two sub-
groups of patients with adult-onset GH
deficiency. One group comprised 13 pa-
tients with a baseline z-score of less
than 21 SD (broken line), and the second
group comprised 31 patients with a
baseline z-score of 21 SD or more (solid
line). Values are given as means 6 SEM.
P values denote the difference between
the percent changes from baseline in
the two groups of patients by two-way
ANOVA. [Reproduced with permission
from G. Johannsson et al.: J Clin En-
docrinol Metab 81:2865–2873, 1996
(304). © The Endocrine Society.]
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firm that GH induces periosteal bone formation in patients
with osteoporosis.

Present treatment modalities of osteoporosis rely almost
exclusively on agents aiming at reducing bone resorption. In
contrast, GH has a stimulatory effect on bone formation as
well as bone resorption, as measured with biochemical pa-
rameters, and the gain in BMC/BMD that was observed after
long-term GH treatment in adult GHD occurred after the first
remodeling cycle (304). There are no GH treatment trials yet
of adequate duration (.18 months) in patients with post-
menopausal osteoporosis. Aloia et al. (336) demonstrated no

net gain of total body calcium in osteoporotic women after
12 months of GH treatment. In a 2-yr study of postmeno-
pausal women, addition of GH to continuous, combined, or
sequential calcitonin treatment had no additional effects on
total body calcium (337, 338). No additional effect of GH
treatment was found on bone mineral mass in postmeno-
pausal women treated with pamidronate during 12 months
and with the addition of GH for 6 months. On the contrary,
the beneficial effect of pamidronate on bone mass and the
reduction of biochemical markers for bone turnover was
blunted by the addition of GH (339). Holloway et al. (340)

FIG. 8. Effect of 7 days treatment with
GH (filled circles, n 5 10) and placebo
(open circle) on biochemical markers of
bone resorption (panel A) and bone for-
mation (panel B) (mean 6 SD) in normal
male volunteers. The GH dosage was
0.1 IU/kg twice a day administered sub-
cutaneously. *, P , 0.05 and **, P , 0,01
difference from pretreatment values.
[Reproduced with permission from K.
Brixen et al.: J Bone Miner Res 5:609–
618, 1990 (311).]
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recently conducted a study in which postmenopausal
women were given cyclic GH treatment for 7 days every 56th
day. This cyclic treatment was repeated 12 times and resulted
in a small but statistically significant increase in BMD of the
lumbar spine and of the hip (1–2%). A cyclic block of bone
resorption with calcitonin did not alter the effect of GH in
this study. In summary, decreased serum levels of IGF-I/
IGFBP-3 are associated with osteoporosis, indicating that the
GH/IGF axis is involved in the pathogenesis of osteoporosis.
It is not yet shown whether GH increases bone mass in
patients with osteoporosis. However, most of the reported
studies have been short-term studies, and future long-term
studies are needed to determine whether prolonged GH
treatment increases bone mass.

The present treatment of postmenopausal osteoporosis
includes calcium, vitamin D, calcitonin, bisphosphonates,
and estrogen replacement therapy. Ho et al. (341, 342) pre-
sented data indicating that oral estrogen treatment decreases
serum levels of IGF-I and increases GH secretion. The au-
thors claim that oral estrogen results in an impaired hepatic
IGF-I production with a concomitant reduced feedback in-
hibition of GH secretion. In contrast, transdermal estrogen
treatment resulted in a slight increase of IGF-I and had no
effect on GH secretion. However, Friend et al. (343) demon-
strated more recently that both transdermal and oral estro-
gen increase GH secretion and decrease serum levels of
IGF-I. These results indicate that the GH/IGF axis also may
be involved in the pathophysiology of postmenopausal os-
teoporosis, and it should be considered in the choice of treat-
ment in patients with postmenopausal osteoporosis.

Deficiency in bone mineral has been widely reported in
Turner’s syndrome (344, 345). It is generally accepted that
osteopenia in Turner’s syndrome is believed to be due to
estrogen deficiency and not skeletal dysplasia per se. Twelve
months treatment with GH did not increase spinal BMD in
these patients (346). However, long-term treatment of
Turner’s patients with GH resulted in a normal bone
mineral status (347, 348).

2. Effects of GH in elderly. Studies in healthy subjects have not
shown any impressive effect of GH on bone mass. Rudman
et al. (349) studied elderly men above 60 yr of age and re-
ported a slight (1.6%) increase in lumbar BMD after 6 months
of treatment. BMD did not change during a 6-month placebo-
controlled trial with GH in healthy elderly women, whereas
a slight decrease was observed in the placebo group. Marked
increases during GH treatment were observed in hy-
droxyproline and pyridinoline excretion (107, 312). How-
ever, serum osteocalcin did not change in women receiving
estrogen therapy and increased only in those without estro-
gen treatment (107) suggesting, in concordance with the data
by Ho and Weissberger (342) described above, that hepatic
IGF-I generation was suppressed due to oral delivery of
estrogen. A positive effect of GH on bone mass in GHD
patients is not seen until 18 months of treatment. Thus, long-
term studies (.18 months) to explore whether GH increases
bone mass in elderly patients are needed before further con-
clusions regarding the effect of GH on bone mass in these
subjects can be made.

3. Corticoid-induced osteoporosis. Glucocorticoid-induced os-
teoporosis is characterized by a concomitant decrease in bone
formation and increase in bone resorption (350). Short-term
GH treatment for 7 days in patients receiving chronic glu-
cocorticoid treatment for autoimmune disorders resulted in
a significant increase in serum osteocalcin, PICP, and CITP
concentrations (351). Further long-term studies are needed to
clarify whether or not GH is useful on glucocorticoid effects
in bone.

4. Effect of IGF-I. Regarding longitudinal bone growth, IGF
has been suggested to be a mediator of some of the GH effect
in its regulation of bone remodeling. Because of its potent
mitogenic propensity on osteoblasts, IGF-I has been thought
to have potential as a formation-stimulating drug in the
treatment of osteoporosis. The first clinical study, in which
IGF-I (160 mg/kg/day) was given for 7 days to one male with
idiopathic osteoporosis, indicated that IGF-I increases bio-
chemical markers of both bone formation and bone resorp-
tion (352). Normal women were treated for 6 days with
different doses of IGF-I: 30, 60, 120, and 180 mg/kg body
weight each day. Numerous side-effects were observed with
the two highest treatment doses but none with the lowest
dose (353). A dose-dependent increase in PICP (an index of
collagen synthesis) and of urinary excretion of deoxypyr-
idinoline were observed, confirming that IGF-I influences
both biochemical markers for bone formation and bone re-
sorption. In contrast, Ghiron et al. (354) observed that lower
doses of IGF-I (15 mg/kg/day) exerted no effect on resorp-
tion markers while osteocalcin and PICP increased progres-
sively in elderly women. The authors claimed that a low dose
of IGF-I is independently capable of stimulating bone for-
mation without inducing bone resorption. Higher doses of
IGF-I gave similar results on markers for bone formation and
bone resorption as did GH. In a study (302) of men with
idiopathic osteoporosis, the effects of GH and IGF-I on bone
metabolism were compared after 7 days of treatment. Both
treatment regimens gave a similar increase in osteocalcin
concentration and increase in urinary excretion of deoxy-
pyridinoline. However, IGF-I treatment increased PICP more
than GH did. Urinary excretion of calcium increased during
GH treatment whereas no changes occurred during IGF-I
treatment. The authors concluded that the differences be-
tween GH and IGF-I might be dose dependent, but could also
indicate separate mechanisms of actions of the two peptides
at the cellular level. This notion is supported by a recent
study in short-term fasting women. Thus, in these subjects,
IGF-I administration increased biochemical markers for bone
formation but not for bone resorption (355). These data sug-
gest a novel use of IGF-I to selectively stimulate bone for-
mation in states of undernutrition and low bone turnover.

In cortical bone of rats, IGF-I treatment results in aug-
mented subperiosteal bone formation, whereas both in-
creased and decreased bone formation has been reported in
the cancellous bone (356–358). In primates, however, GH but
not IGF-I increased bone formation, as determined by min-
eral apposition rate (196), and it is not yet clear whether IGF-I
promotes bone formation as determined by histomorphom-
etry or bone mineral measurements.

In summary, both GH and IGF-I treatment increases bio-
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chemical markers for both bone formation and bone resorp-
tion. GH treatment increases bone mass in GHD patients, but
it is not yet clear whether IGF-I also has the capacity to
increase bone mass in humans. In vitro data have demon-
strated that GH exerts direct anabolic effects on osteoblasts
(see Section III), and some of these direct effects of GH may
not be achieved by a systemic IGF-I treatment. Future clinical
studies will clarify whether IGF-I treatment is as efficient as
GH in increasing bone mass.

VI. Summary and Conclusions

It is well known that GH is important in the regulation of
longitudinal bone growth. Its role in the regulation of bone
metabolism in man has not been understood until recently.
Several in vivo and in vitro studies have demonstrated that
GH is important in the regulation of both bone formation and
bone resorption. In Figure 9 a simplified model for the cel-
lular effects of GH in the regulation of bone remodeling is
presented (Fig. 9). GH increases bone formation in two ways:
via a direct interaction with GHRs on osteoblasts and via an
induction of endocrine and autocrine/paracrine IGF-I. It is
difficult to say how much of the GH effect is mediated by
IGFs and how much is IGF-independent. GH treatment also
results in increased bone resorption. It is still unknown
whether osteoclasts express functional GHRs, but recent in
vitro studies indicate that GH regulates osteoclast formation
in bone marrow cultures. Possible modulations of the GH/
IGF axis by glucocorticoids and estrogens are also included
in Fig. 9.

GH deficiency results in a decreased bone mass in both
man and experimental animals. Long-term treatment (.18
months) of GHD patients with GH results in an increased
bone mass. GH treatment also increases bone mass and the
total mechanical strength of bones in rats with a normal GH
secretion. Recent clinical studies demonstrate that GH treat-
ment of patients with normal GH secretion increases bio-
chemical markers for both bone formation and bone resorp-
tion. Because of the short duration of GH treatment in man
with normal GH secretion, the effect on bone mass is still
inconclusive.

Interestingly, GH treatment to GHD adults initially results
in increased bone resorption with an increased number of
bone-remodeling units and more newly produced unmin-
eralized bone, resulting in an apparent low or unchanged
bone mass. However, GH treatment for more than 18 months
gives increased bone formation and bone mineralization of
newly produced bone and a concomitant increase in bone
mass as determined with DEXA. Thus, the action of GH on
bone metabolism in GHD adults is 2-fold: it stimulates both
bone resorption and bone formation. We therefore propose
“the biphasic model” of GH action in bone remodeling (Fig.
10). According to this model, GH initially increases bone
resorption with a concomitant bone loss that is followed by
a phase of increased bone formation. After the moment when
bone formation is stimulated more than bone resorption
(transition point), bone mass is increased. However, a net
gain of bone mass caused by GH may take some time as the
initial decrease in bone mass must first be replaced (Fig. 10).
When all clinical studies of GH treatment of GHD adults are
taken into account, it appears that the “transition point”
occurs after approximately 6 months and that a net increase
of bone mass will be seen after 12–18 months of GH treat-
ment. It should be emphasized that the biphasic model of GH
action in bone remodeling is based on findings in GHD
adults. It remains to be clarified whether or not it is valid for
subjects with normal GH secretion.

A treatment intended to increase the effects of the GH/
IGF-I axis on bone metabolism might include: 1) GH, 2) IGF,
3) other hormones/factors increasing the local IGF-I pro-
duction in bone, and 4) GH-releasing factors. Other hor-
mones/growth factors increasing local IGF may be impor-
tant but are not discussed in this article. IGF-I has been
shown to increase bone mass in animal models and bio-
chemical bone markers in humans. However, no effect on
bone mass has yet been presented in humans. Because the
financial costs for GH treatment is high it has been suggested
that GH-releasing factors might be used to stimulate the
GH/IGF-I axis. The advantage of GH-releasing factors over
GH is that some of them can be administered orally and that
they may induce a more physiological GH secretion. Clinical

FIG. 9. The authors’ proposed mechanism of action at the cellular
level for GH in regulation of bone remodeling. The left part of the
figure represents osteoclast-mediated bone resorption, while the right
part represents osteoblast-mediated bone formation. ? indicates that
both stimulatory and inhibitory effects have been shown.

FIG. 10. The biphasic model of GH action in bone remodeling. Ac-
cording to this model, GH results initially in an increased bone re-
sorption with a concomitant bone loss followed by a later increased
bone formation. After the moment when bone formation is stimulated
more than bone resorption (transition point), bone mass is increased.
However, a net gain of bone mass of GH may take some time as the
initial decrease in bone mass must first be replaced.

70 OHLSSON ET AL. Vol. 19, No. 1



studies and initial experimental studies in dogs have dem-
onstrated that GH-releasing factors increase GH secretion
and regulate biochemical bone markers (Ref. 359 and our
unpublished results).

We conclude that GH treatment increases bone mass in
GHD adults, and future clinical studies will determine
whether some patients with decreased bone mass of other
origins will benefit from treatment with GH alone or in
combination with other treatments.
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