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1. Introduction

The recent advances in cognitive science, psychology, and related fields have indicated that the human emotion
(such as anger, fear, stress, distraction, and fatigue) plays a critical role in a person’s behavior [28,21]. The behavior
of drivers has been an active field of study for decades [23], and it has attracted considerable attention recently
[34]. The driver fatigue remains to be one of the important factors that contribute to traffic accidents. The National
Highway Traffic Safety Administration (NHTSA) of USA estimates that there are annually about 100,000 crashes in
USA that are caused by fatigue and result in more than 1500 fatalities and 71,000 injuries [15]. Some studies have
demonstrated that the driver drowsiness accounts for 16% of all crashes and over 20% of the crashes in the highways
[8]. Thus, the driver fatigue assessment remains to be a big challenge to meet the demands of future intelligent trans-
portation systems [3]. Developing a system that actively monitors the driver’s fatigue level in real time (and produces
alarm signals when necessary), is important for the prevention of accidents, and this is the main motivation of our
paper.

One of the key steps towards developing a fatigue monitoring system is to consider the features that could be effectively
used for fatigue recognition. We can classify these features into four general categories: (1) causal/contextual features, (2)
physiological features, (3) performance features, and (4) multi-features. In the following paragraphs, we discuss these
categories.
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1.1. Contextual features based method

The contextual features mainly include (i) the personality, sleeping quality, circadian rhythm, physical condition, (ii) the
work conditions such as noise, driving hours [11,30], and the cab temperature; (iii) the environment such as monotony of
road, density of cars, and number of lane. Such contextual features are collected mainly by questionnaires, and then the dri-
ver’s fatigue is inferred from the collected data using some statistical methods or other means such as neural network or
fuzzy set theory [10,11,33,35].

1.2. Physiological features based method

The drivers may exhibit some easily observable physiological features from which their fatigue can be inferred
[15,28,32,39,41]. Physiological features may be classified into: contact features, including the brain activity, heart rate vari-
ability, and skin conductance - these can be easily detected by EEG (electroencephalogram), ECG (Electrocardiograph), and
EMG (electromyogram); and contactless features, including the eye movements (EM), head movement, and facial expressions
- these can be easily observed from the dynamic images provided by a CCD camera. Consequently, two approaches for re-
search are feasible: the contact feature based method and the contactless feature based method.

The contact feature based method focuses on inferring the driver’s fatigue from the contact features. Using the fact that
the EEG can represent abundant information on the human cognitive states, an algorithm based on the changes in all the
major EEG bands (delta, theta, alpha, and beta bands) during the fatigue was developed by Lal et al. [19] to detect different
levels of fatigue. Combining the EEG power spectrum estimation, principal component analysis, and fuzzy neural network
model, Jung et al. [17] designed a system to estimate and predict the drowsiness level of a driver. Taking the associated
wavelet representations for the EEG at different scales as system inputs, Wilson and Bracewell [41] constructed a neural net-
work to detect the onset of the driver’s fatigue. Zhou et al. [46] proposed a new feature extraction method based on the bi-
spectrum and applied it for the classification of the right and left motor imagery for developing EEG-based brain—-computer
interface systems. Budi et al. [2] assessed the four electroencephalography (EEG) activities, (delta (5), theta (0), alpha (o) and
beta (8)) during a monotonous driving session for 52 subjects (36 males and 16 females), and got the results for conditions
stable delta and theta activities over time, a slight decrease of alpha activity, and a significant decrease of beta activity.

The ECG is another contact feature, including the LF (low frequency), VFH (very low frequency), HF (high frequency), and
the LF/HF ratio, that contains relevant information about fatigue [33]. By taking the Hermite polynomial coefficients of the
ECG as inputs, [24] presented a neuro-fuzzy network approach that was used to recognize and classify the heart rate vari-
ation. It is noted that Picard et al. [28] also applied this to affective computing, and proposed a hybrid recognition algorithm
combining the Sequential Floating Forward Search and the Fisher Projection for the emotion recognition, by selecting the
means, the standard deviations, the first differences, and the second differences of the EMG, BVP (blood volume pulse),
GSR (galvanic skin response), and respiration from the chest expansion as physiological features. In addition, the fast Fourier
transforms (FFTs) and three other modeling techniques, namely, the autoregressive (AR) model, the moving average (MA)
model and the autoregressive moving average (ARMA) model, are used to estimate the power spectral densities of the RR
interval variability in Zachary et al. (2008). The spectral parameters obtained from the spectral analysis of the HRV signals
are used as the input parameters to the artificial neural network (ANN) for the classification of the different cardiac classes.

The contactless feature-based method focuses on inferring the driver’s fatigue from the contactless features
[13,18,26,44,1. Experiments have demonstrated that the driver in fatigue should exhibit some visual cues Ji et al. [15]. Horng
et al. [13] proposed a driver fatigue detection algorithm based on the eye tracking and dynamic template matching. Norima-
tsu et al. [26] investigated the detection of the gaze direction using the time-varying image processing in which the facial and
the gaze directions, without considering the facial direction, were detected separately, and then they were integrated into
the final gaze direction. Kim et al. [18] constructed a fuzzy neural network-based method for fatigue recognition by taking
the openness degrees of the mouth and eyes respectively, and the vertical distance between the eyebrows and eyes as inputs.

1.3. Performance measurement based method

Driver’s fatigue can contribute to the deterioration in the operational performance (such as the reaction time, lane posi-
tion deviation, and hand movement of controlling the steering wheel). A fuzzy set-based method involving the small move-
ment of controlling the steering wheel was put forward by Vysoky [38,37] to calibrate and predict the driver’s fatigue.

1.4. Multi-feature fusion-based method

The three methods described above focus only on a certain specific aspect, and that may lead to inaccurate results be-
cause the driver’s fatigue is not directly observable but can only be inferred from the information available. There are a num-
ber of reasons for the inaccuracies using the method mentioned above: (i) the driver’s fatigue derived from the contextual
features contains much subjectivity that can not always reflect the real objectivity; (ii) inferring the driver’s fatigue from the
facial expression is not always reliable because of the following two limitations: (a) the current techniques for image pro-
cessing can not always ensure the recognition accuracy; (b) an introverted person might have a tendency to control his or her
display of emotions, especially in the presence of people he/she is not well acquainted with [6], which leads to an inaccurate
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interpretation of the facial expression. Thus, to fuse as many as possible features from uncertain events is a better way to
make an accurate inference [5]. Further, Picard et al. [28] pointed out that it was necessary to fuse the contextual and phys-
iological features, and the driver’s performance in order to make the fatigue recognition more reliable.

By considering the evidence and beliefs of the contextual information and the visual cues from a single time instant, Ji
et al. [15] constructed a static Bayesian network (SBN) to infer and predict the fatigue of human beings, enhancing the
reliability of fatigue recognition. However, such a network does not consider the physiological contact features and is
not suited to systems that evolve over time [16,21,43,45]. The Dynamic Bayesian network (DBN) has been developed to
overcome this limitation. Li and Ji [21] introduce a new probabilistic framework based on DBN to dynamically model
and recognize the user’s affective states and to provide the appropriate assistance in order to keep the users in a produc-
tive state. Considering the evidence and beliefs of contextual information and visual cues from multiple time stamps, a
new probabilistic framework based on DBN has been introduced in Ji et al. [16] but it has excluded the contact physio-
logical features.

Besides the contextual information and visual cues (the contactless features), the contact physiological features (such as
the EEG, and the ECG) may also contribute significantly to the fatigue because a person usually has little control over these
contact features and so they could provide reliable source of information on a person’s emotion [6]. However, it is very dif-
ficult to apply these two physiological signals non-intrusively because usually the electrodes and wires are used to contact a
driver intrusively in order to obtain the EEG and ECG signals. There have been some efforts in developing non-obtrusive EEG
and ECG technologies, and there has been a certain degree of success related to the non-obtrusive instrument use in labo-
ratory settings. It is thus expected that the non-obtrusive EEG and ECG technologies (e.g. wireless technology) will become
feasible in the near future for applications to fatigue estimation for drivers. Therefore, it is useful to investigate fusing the
ECG and EEG features with other features for getting reliable fatigue estimations, which lays a strong foundation for the real
application of getting reliable fatigue estimation from multiple features.

Inspired by the research of Ji et al. [ 16], in particular by the inclusion of the contextual features with the contactless features
(mainly the facial expression features), we have developed a DBN-based fatigue recognition model along with its inferring algo-
rithm to make the fatigue recognition task more feasible. However, our approach differs from that of Ji et al. [ 16] in the following
ways: (i) we have included the contact physiological features - in particular the ECG and EEG, and (ii) in the treatment of the
dynamics of a Bayesian network from one time slice to another, we have used the first order HMM (Hidden Markov Model).

The rest of the paper is organized as follows. Section 2 presents the problem description and a general architecture of the
proposed DBN-based fatigue recognition model. In Section 3, the proposed DBN-based fatigue recognition model using mul-
tiple contextual and physiological features is presented along with the inference method corresponding to the model. In Sec-
tion 4, the validation of the model is presented. Section 5 concludes the paper with further discussions.

2. Problem description

Assume that [Z1,Z5,...,Z,,...] is the semi-infinite collection of random variables, Z; = (C;, X;,0;) denotes the input, hidden
and output variables of a state-space model at a certain time instant t. A DBN is used to model the probability distributions
over the semi-infinite collection. A DBN can be considered as a collection of SBNs interconnected by sequential time slices,
and the relationships between two neighboring time slices are modeled by an HMM (hidden Markov Model) [21,43]. In par-
ticular, without loss of generality, we took the first-order HMM. A DBN is defined as a pair of (B, B), where B is a SBN which
defines the prior P(Z;), and B is a two-slice Temporal Bayesian Network (2TBN) which defines P(Z,—Z;_,) in the following
equation [25] by means of a DAG (directed acyclic graph):

Pz - [[P(Z|pa(2)) 0
i=1

where N is the number of the nodes in the graph, Zi is the ith node at timet, which could be a component of C,, X, or O,, and
Pa (Z‘[) are the parents onﬁ which can be either in the same time slice or in the previous time slice. In the following, we show

how to construct a DBN for fatigue recognition in particular. The construction of a DBN has two tasks: (1) the determination
of nodes and (2) the determination of their prior probability. The nodes are related to the features (i.e., the cues) of human
drivers while the prior probability indicates the likelihood of a particular feature that contributes to the fatigue.

As remarked in Section 1, there are many contextual and physiological features related to driver fatigue. Among these
features, some of them lead to more contributions to the fatigue while others have lesser contributions to the fatigue. For
the sake of simplicity but without any loss of generality, we only select those contextual and physiological features that have
immediate relations with the fatigue. In particular, the following features or variables are selected.

2.1. Sleeping quality (SQ) analysis

The SQ is an important contextual feature that has an immediate relation with the fatigue [33]. The driver’s SQ is asso-
ciated with such quantities such as: the duration of sleep (and the lack thererof), difficulty in falling asleep at night, the
sleeping environment, and other social factors. Among them, the sleep time and the sleeping environment were taken as
the key contributors to SQ because a certain minimum number sleep hours is necessary for everyone, especially to drivers,
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and whether the sleep is good or not mainly depends on the sleeping environment. Therefore, the SQ was taken as one of the
contextual features corresponding to the nodes of the DBN graph.

2.2. Circadian rhythm (CR) analysis

The circadian rhythm (CR) is a cardinal contextual variable in recognizing the fatigue. Lal et al. [20] pointed out that the CR
should be an important consideration in the study of the driver fatigue because it is found that there are two peaks of sleep
each day (these peaks appear during 3-5 A.M. and 3-5 P.M. approximately), and sleep may come more easily and fatigue may
reach the highest level during these periods. Vysoky [37] identified CR as a factor mainly influencing the driver’s alertness.
Therefore, the CR is also selected in this paper as one of the contextual variables corresponding to the nodes of the DBN graph.

2.3. Work environment (WE)

It is obvious that noise, the monotony of the road, the density of cars on a highway, the number of lanes, and the in-car
temperature have strong relations with the driving environment that has contributions to the driver’s fatigue. Among these
features, the noise and temperature have immediate relations with the work environment. Therefore, the noise and temper-
ature were taken as two contextual features corresponding to the nodes of the DBN graph.

2.4. Eye movement (EM) analysis

The eye gaze, eye blink, and eyelid closure are different manifestations of the EM [22]. When the EM is used to research
the driver’s fatigue, these manifestations are described as the PERCLOS (percentage of eyelid closure over the pupil in a given
time) [40], which is a reliable and valid determination of a driver’s fatigue [15]. Several studies [15,40] indicate that the dri-
ver is possibly in a state of fatigue if the eyes are at least 80% closed in the unit of time of a minute. Thus, the proportion of
the eye-closed time was taken in this paper as one of the observable variables corresponding to the nodes of the DBN graph.

2.5. ECG analysis

The heart rate varies significantly for the same individual in different states such as alertness and fatigue. This is the main
reason why the ECG is often used for detecting the driver’s states. The ECG signal is first smoothed by a simple low-pass filter
with a cut-off frequency of 100 Hz, and then transformed by the FFT algorithm into the frequency domain mainly including
the LF, VLF, and HF. Among these frequency features is the LF/HF ratio that has strong relations to a driver’s fatigue. Calcag-
nini et al. [4] pointed out that the LF/HF ratio would decrease progressively when passing from the awake state to the fatigue
state. Therefore, the LF/HF ratio describing driver’s states was taken as one of the observable variables corresponding to the
nodes of the DBN graph. In this paper, the method presented by Yang et al. [9] is adapted to calculate the changes around the
standard baseline of EEG.

2.6. EEG analysis

The frequency domain of EEG mainly includes the delta band (0.5-4 Hz) corresponding to the sleep activity, the theta
band (4-7 Hz) related with drowsiness, the alpha band (8-13 Hz) corresponding to relaxation and creativity, and the beta
band (13-25 Hz) corresponding to activity and alertness [17]. Note that only the alpha band has strong relations with fatigue
study, and the variations in the EEG trace, such as a decrease in the alpha rhythms, is interpreted to indicate states of fatigue
[20,31]. Further, the decrease in the alpha rhythms shows that a driver is at the fatigue state. During a stage of vigorous activ-
ity or stress, the driver’s average magnitude of the signal within the alpha band is taken as the standard baseline. In the fa-
tigue situation, obvious changes of the alpha signals around the standard baseline always take place. Therefore, the change
around the standard baseline of the EEG spectrum was taken as one of the observable variables corresponding to the nodes of
the DBN graph. In the present study, a simple low-pass filter with a cuto? frequency of 50 Hz and the independent compo-
nent analysis are employed to smoothen the EEG signals, the smoothened signals are then transformed into the frequency
domain by use of the fast Fourier transform (FFT) algorithm (for further details on calculating the change around the stan-
dard baseline of EEG, see Yang et al. [9]).

On the basis of the above analysis, the SQ, WE and CR are chosen as the key contextual variables corresponding to the
component C; of Z,, while the EM, ECG, and EEG are the observable variables corresponding to the component O; of Z,. Given
that the FAT representing the driver’s fatigue has two states (fatigue and alertness) corresponding to the hidden variable X,
the proposed generic DBN structure used to recognize driver’s fatigue is illustrated in Fig. 1.

3. DBN-Based fatigue recognition model

A DBN can be applied to deal with either continuous or discrete stochastic processes. In this paper, we only consider the
discrete stochastic process; i.e., the contextual, hidden and observable variables have finite random values, which form a
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Time slice t

Temperature

Fig. 1. The detailed DBN structure used to recognize driver’s fatigue.

Table 1
SQ and its parent discrete variables and their states.

Sleep_time node (states) Sleep environment node (states) SQ node (states)

sufficient Deprived Poor Normal Bad Good

Table 2
WE and its parent discrete variables and their states.

Temperature node (states) Noise node (states) WE node (states)

High Normal High Normal Bad Good

Table 3
CR discrete variables and their states.

CR node (states)
Low High

discrete DBN. To set up a fatigue recognition model based on the discrete DBN, the first step is to specify the nodes of the
discrete DBN. In other words, we need to specify the contextual, hidden and observable variables that are used to construct
the discrete DBN network (where we take the SQ, WE and CR as the key contextual variables, the EM, ECG, and EEG as the
observable variables, and the FAT including fatigue and alertness as the hidden variable, as explained in Section 2, see Fig. 1).
The second step is to determine what values are used to represent the discrete variables. The third step is to configure the
initial states of variables, i.e., to calculate the SBN (or B) at time t = 1. The last step is to calculate the conditional probability
over time and to infer the fatigue of a driver. In the following, the last three steps are described in detail.

3.1. Step 1: Determining discrete values for each node (variable)

As for the contextual, hidden and observables selected in Section 2, the fuzzy method is used to determine the discrete
values for each variable based on a set of heuristic knowledge rules [31]. Tables 1-4 summarize the discrete variables and
their state values.

3.2. Step 2: Calculating SBN (B)

With reference to Eq. (1), it is necessary for calculating DBN to know the prior P(Z;) in advance, i.e., determining the SBN
at time t = 1 given the initial conditions. We use capital letters to denote the variable (or node) names, and lowercase letters
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Table 4
Hidden and observation discrete variables and states.
Component Variable State values Description
Hidden variable FAT Statel Fatigue The state of driver’s fatigue
State2 Alertness
Observation variable EM Statel Large Percentage of eyelid closure over time
State2 Medium
State3 Small
ECG Statel Decrease LF/HF ratio of ECG wave
State2 No-change
State3 Increase
EEG Statel Decrease The changes of average magnitude within alpha band of EEG spectrum
State2 No-change
State3 Increase

4,1
¢ =low
c? = high

6,1 __ . 51
¢ = sufficient ' =low

Sleep
environment

7 2 _
C 30 _
! ¢ =drowsy
3,2 .
¢ =active

1 _ .

X, = fatigue
2

X, = neutral

=decrease

32 _
0;"” =no—change

33 .
o, =1ncrease

2,1
o, =decrease

2,2 _ .
0,” =no—change

23 _ .
0, =1ncrease
Fig. 2. The SBN structure at time t=1.

to denote the specific values taken by the variables. Following such a notation, let X, C{ and Oi (j=1,2 or 3 be the SQ, WE or
CR (where SQandWE are represented in conditional probability by sleep time and sleep environment variables or tempera-
ture and noise variables ), while i = 1, 2 or 3 can be the EM, ECG or EEG) be the hidden fatigue node, the contextual nodes, and
the observable nodes at time t, respectively, and x¥, c{*’" and o{'”(k, m=1,2 and j,n = 1,2, 3) denote the specific values taken
by X, ¢ and O/, respectively. From Fig. 1, we can derive the SBN at time t = 1, shown as Fig. 2.

Assume that the evidences from the contextual nodes at time t=1 are represented as e§ = e , where e”1 represents
the evidence of the ith contextual node with the jth state value, and the evidences from the observable nodes at time

t=1 are represented as e} = {eoyl } where e, represents the evidence of the ith observable node with the jthstate value.

Denote e; = {ec, e‘l’} to be the evidences from the contextual and observable nodes at time t = 1, then the conditional prob-
ability of X given the occurrence of e§ can be written as [7]

P(X = xk|ef) uiiiP( —xl‘c1 A )P(c}'i>P(cf'j)P<cf"> k=1,2 (2)
i=1 j=1 I=1

and the conditional probability of e} given the occurrence of node X can be written as [7]
P(€5[X = x§) ox Pe}] [X = x5 ) P2 X = x5 ) P(e3X = xb)
3 3 ,
= P el] Ol.l P Ol.lX:Xk ) % ( 2 eZJ OZ.m P 02‘mX:Xk > x ( 2 e3.j 03‘11 P(OB'HXZX’<)>
(St (ot =) )« (S (et i)t mix ) ) « (S r(eor et

m=1 n=1

k=1,2andj=1,2,3 3)
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According to Bayes’ theorem, the conditional probability of node X given the occurrence evidence of e; at time t=1 is
obtained by combining Egs. (2) and (3).

P(X = xi|ef)P(ef|X = xf)
ip@:ﬂkﬂﬂgk:ﬂ)

j=1

P(X =xk|er) = k=1,2 4)

Eqgs. (2)-(4) indicate the initial case, i.e., the SBN at time t=1.
3.3. Step 3: Calculating the conditional probability over time

Having specified the nodes of the discrete DBN and the initial state values of each node, and having configured the SBN (or
B) at time ¢t = 1, the next step is to calculate the conditional fatigue probability over time and to infer what we want about the
driver, i.e., to calculate Eq. (1) (orB). In this paper, a DBN is viewed as interconnected time slices of SBNs, and the relation-
ships between two neighboring time slices are modeled by a first-order HMM. Following such a stipulation, we have con-
sidered that the random fatigue variable at the current time slice t is influenced by the contextual and observable
variables at the current time slice t, as well as by the corresponding random fatigue variable at the previous time slice
t — 1 only. Based on this principle and corresponding to Fig. 1, we draw the DBN structure at time t, as shown in Fig. 3.

Denote P(x¥ ), where k = 1,2 as the conditional probability of the node X with different state values at time slice t — 1.
The conditional probability of X given the occurrence of e{ at time slice t can be obtained by using Eq. (2), see Fig. 3:

2 2 2 2
PX=xfle) o> D> Z:P(X:x’l<

i=1 j=1 I=1 m=

i e cam 1)P(c}“)P(chP(cﬁ"‘)P(x?ll) k=1,2 (5)

—_

and the conditional probability of e? given the occurrence of node X at time slice ¢ can be calculated by using Eq. (3).

P(e?|X = x) o P(ef,ﬂx =xk P(ef,ﬂx :xt> <e3J X =x )

- (Sopletop(atx ) ) « (Sop(eier ootk ) ) « (Sop(eer (e )

k=1,2j=1,2,3 (6)

According to the Bayes’ theorem, the conditional probability of node X given the occurrence evidence of e, = {e{,e?} at
time slice t is obtained by combining Eqs. (5) and (6).

PX = e PleX =

P(X =xfle;) = :
xz@)

- k=12 (7)

;P@:ﬂmp@g

i=

Egs. (5)-(7) indicate the conditional fatigue probability over time slice t.

30 _
¢, =drowsy

32 ,
¢;” =active

x! = fatigue

2
Time slice t X, = alertness

3l
0," =decrease

32 _ h
, = ho—change

21
" =decrease

2,2
0" =no—change

3.3 .
X 0,” =1ncrease

0> =increase

Fig. 3. The DBN structure at time t.
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4. Validation

The validation of the proposed DBN model to predict the fatigue was conducted in a simulated driving environment. In
the following, we first describe how the parameters of the proposed model are determined, and then we present the results
of the experiments.

4.1. Construction of prior probability tables

The prior probabilities for the root nodes and the conditional probabilities for the links of the network need to be deter-
mined before the model can be useful. Usually, the probability is obtained from statistical analysis of a large amount of train-
ing data. In this study, we acquired information from several published papers [11,12,15,16,21,28,30,33,44]. However, not all
the required data can be obtained; in this study we also obtained data through the computer generation following the noise-
or principle (http://www.ai.mit.edu, Murphyk). Yet, some probabilities were still determined based on our experience. For
example, the transitional probability between the same states of two slices, e.g., the positive to positive or the negative to
the negative, is considered to be relatively high; on the other hand the transitional probability between the opposite states,
the positive to negative, or the negative to positive, is much lower. With all these efforts, we obtained the probabilities used
in our DBN model, which are shown in Tables 5-10.

In Table 5, the numbers represent the conditional probability for SQ as the different events of the sleep_time and
sleep_environment take place simultaneously.

In Table 6, the numbers represent the conditional probability for WE as the different events of the temperature and noise
take place simultaneously.

In Table 7, the numbers represent the conditional probability for CR as the event of the active time or drowsy time takes
place.

In Table 8, the numbers represent the conditional probability for fatigue as the different events of SQWE and CR take
place simultaneously.

In Table 9, the numbers represent the conditional probability for EM, ECG, and EEG respectively as the event of fatigue
take place simultaneously.

In Table 10, the numbers represent the conditional probability for the current fatigue as the different events of SQ, WE, CR
and the fatigue before the current fatigue take place simultaneously.

To get the data set of CR, we designed a questionnaire mainly concerning the time period in which the drowsy state is
most likely to take place. The questionnaires were distributed among thirty computer science students of the Henan Univer-

Table 5
Conditional probability for SQ.
Sleep_time node Sleep_environment node SQ node (states)
Bad Good
Sufficient Poor 0.34 0.66
Normal 0.05 0.95
Deprived Poor 0.95 0.05
Normal 0.73 0.27
Table 6
Conditional probability for WE.
Temperature node Noise node WE node (states)
Bad Good
High High 0.94 0.06
normal 0.8 0.2
Normal High 0.73 0.27
Normal 0.10 0.9
Table 7

Probability for CR.

CR node (States = drowsy or awake)

Drowsy time 0.94 0.06
Active time 0.8 0.2
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Table 8
Conditional probability for fatigue node.
SQ WE CR Fatigue node
Drowsy Active
Bad Bad High 0.98 0.02
Normal 0.89 0.11
Good High 0.88 0.12
Normal 0.77 0.33
Good Bad High 0.51 0.49
Normal 0.27 0.73
Good High 0.15 0.85
0.05 0.95
Table 9
Conditional probabilities for EM, ECG and EEG given fatigue node.
Fatigue node EM node ECG node EEG node
Large Medium Small Decrease No-change Increase Decrease No-change Increase
FA 0.94 0.05 0.01 0.93 0.06 0.01 0.91 0.08 0.01
AL 0.01 0.05 0.94 0.01 0.06 0.93 0.01 0.08 0.91
Table 10
Conditional probability for Fatigue node.
Fatigue (time t — 1) SQ WE CR Fatigue (time t)
Drowsy Active
FA Bad Bad Drowsy 0.91 0.09
Active 0.88 0.12
Good Drowsy 0.90 0.10
Active 0.85 0.15
Good Bad Drowsy 0.87 0.13
Active 0.82 0.18
Good Drowsy 0.83 0.17
Active 0.81 0.19
AL Bad Bad Drowsy 0.20 0.80
Active 0.17 0.83
Good Drowsy 0.18 0.82
Active 0.13 0.87
Good Bad Drowsy 0.15 0.85
Active 0.1 0.9
Good Drowsy 0.12 0.88
Active 0.09 0.91

sity, China who were asked to answer questions regarding their drowsiness statees from 2:30 P.M to 5:30 P.M in the recent
days. The statistical analysis of the questionnaire results in the probability for CR, as shown in Table 11.

To get the data sets of SQ, EEG, ECG and WE, a driver simulator equipped with instruments such as the CCD camera, EEG
and ECG was acquired with the help of the Multi-Media Lab and the Psychology Lab of the Henan University. Thirty students
from the Computer Science Department of Henan University who do not have any kind of sleep disorder volunteered to par-
ticipate in the experiments. They were deprived of good sleep during the previous night (e.g. the sleep time was less than
6 h) and were asked to participate in the simulation test when they came to the Lab after 2:30 P.M next day. With this sce-
nario (the Lab environment was relatively good), each participant was asked to operate the driving simulator at the speed of
65 km/h, and no food or drink were permitted during the experiment. The probabilities of SQ and WE were determined and
shown in Tables 12 and 13.

The simulation experiments lasted from 2:30 P.M to 5:30 during which, each participant was asked to operate the driving
simulator at the speed of 65 km/h. The EEG and ECG signals of each participant were measured at the sampling rate of
250HZ, and his/her dynamical facial image was obtained at the sampling rate of 2 seconds. The EEG, ECG and dynamical fa-
cial image signals of each participant were collected at the same rate of 6 minutes. Signals were processed with the corre-
sponding methods to form the evidence data sets which are needed to infer driver’s fatigue estimation. For example, if the

evidence coming from EM is that PERCLOS is equal to 85, then P(e&:) =0.89, P(eéf) = 0.42,P<ell)f’> = 0.18; if the evidence
coming from ECG is that the decrease of LF/HF is large, then P(eé:}) = 0.92,P(e§f) =0.21,P(e}}) = 0.09; if the evidence
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Table 11
Probability for CR.
Drowsy Active
0.89 0.11
Table 12
Probability for SQ.
Bad Good
0.95 0.05
Table 13
Probability for WE.
Bad Good
0.1 0.9
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Fig. 4. Simulation result (Features: SQ, WE, CR, EM, EEG and ECG).

coming from EEG is that the decreases in alpha rhythms is large, then P(eé:}) = 0.91,P(e(3,f) = 0.19,P(egf’) = 0.10. These

probabilities were assigned according to the statistical properties of the data obtained from the participants.

4.2. Results and discussion

Under the constructed simulation scenarios, computer simulations were performed on the proposed fatigue recognition
model by using the data described above. The simulation results are shown in Figs. 4-7. Fig. 4 is the simulation result with
the features of SQ, WE, CR, EM, EEG and ECG. It can be observed from Fig. 4 that: (1) the time period in which the participants
are in their completely drowsy state is about from 3 P.M to 3:45 P.M, which is consistent with the “true” fatigue; (2) when
multiple features of SQ, WE, CR, EM, EEG and ECG are employed to infer the driver’s fatigue, the estimation is almost com-
pletely approximating the “true” fatigue after 30 minutes, especially in the drowsy time period; and (3) the average square
error is 1/30 « 3 (estimated_fatigue — true_fatigue)® = 0.5269. These results have provided a good validation of the effective-
ness of the proposed fatigue recognition model.

Fig. 5 is the simulation result with the features of SQ, WE, CR, EM and EEG but without ECG.

Fig. 6 is the simulation result with the features of SQ, WE, CR, EM and ECG but without EEG.

Fig. 7 is the simulation result with the features of SQ, WE, CR and EM but without ECG and EEG.

The following observations can be made from Figs. 5-7:
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Fig. 5. Simulation result (Features: SQ, WE, CR, EM, and EEG, without ECG).
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(1) When the ECG or EEG features are removed from the feature set, the performance of the fatigue estimation becomes
slightly worse than that of Fig. 4, as can be observed from Figs. 5 and 6. However, such a difference is not obvious,
which can be highlighted by the fact that the average square error in Fig. 5 is 0.6723, while the average square error
for Fig. 6 is 0.7488, both are a little bigger than the one (0.5269) in Fig. 4. This shows that the ECG or EEG feature has an
immediate impact on the inferring driver’s fatigue estimation.

(2) When both the ECG and EEG feature are removed from the feature set, an obvious difference exists between the esti-
mated fatigue and the true fatigue, especially in the drowsy time period, which can be seen from Fig. 7. Thus, the per-
formance of the fatigue estimation without ECG and EEG is much worse than that depected in Fig. 4, which can be
explained by the fact that the average square error in Fig. 7 is 1.2629, while the average square error for Fig. 4 is
0.5269.

Comparing Fig. 4 with Fig. 7, the previous works such as Ji et al. [16] that can be considered as the one without ECG and
EEG (see Fig. 7). Thus, the result based on the simulated experiment has implied that the proposed model may improve the
accuracy of predictio.

5. Conclusion and future work

In this paper, a new method for inferring driver’s fatigue estimation based on the dynamic Bayesian network was pro-
posed. Multiple features, including contextual, contact physiological, and contactless physiological features were used,
which have the widest coverage of the categories of features. The first-order Hidden Markov Model (HMM) has been em-
ployed to compute the dynamics of a Bayesian network at two different time slices. Simulation-based experiments were per-
formed to demonstrate the validation of the proposed model. Two important conclusions can be drawn from this study: (i)
more features, especially the contact physiological feature category, which covers more features implying driver fatigue rec-
ognition, are favorable for inferring the driver fatigue more reliably and accurately; (ii) the ECG and EEG are two important
features for fatigue recognition, and they should not be absent from consideration in any driver fatigue detection system.

It would be of significant interest to extend the current model of a discrete random process to a continuous random pro-
cess to handle more practical situations; and also to investigate how to decrease the subjectivity in determining the transi-
tion probability (i.e., learning the DBN structure and parameters from the samplings), which is very important for the
problem discussed in this study. We hope that this work would generate further interest in this challenging research
problem.
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