
Future Generation Computer Systems 29 (2013) 1012–1023
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A framework for ranking of cloud computing services
Saurabh Kumar Garg a,∗, Steve Versteeg b, Rajkumar Buyya a

a Cloud Computing and Distributed Systems Laboratory, Department of Computing and Information Systems, University of Melbourne, 3053, Australia
b CA Technologies, Melbourne Victoria, 3004, Australia

a r t i c l e i n f o

Article history:
Received 1 March 2012
Received in revised form
6 June 2012
Accepted 11 June 2012
Available online 19 June 2012

Keywords:
Cloud computing
Service measurement
Quality of service
Service level agreement

a b s t r a c t

Cloud computing is revolutionizing the IT industry by enabling them to offer access to their infrastructure
and application services on a subscription basis. As a result, several enterprises including IBM, Microsoft,
Google, and Amazon have started to offer different Cloud services to their customers. Due to the vast
diversity in the available Cloud services, from the customer’s point of view, it has become difficult to
decide whose services they should use and what is the basis for their selection. Currently, there is no
framework that can allow customers to evaluate Cloud offerings and rank them based on their ability
to meet the user’s Quality of Service (QoS) requirements. In this work, we propose a framework and
a mechanism that measure the quality and prioritize Cloud services. Such a framework can make a
significant impact andwill create healthy competition amongCloudproviders to satisfy their Service Level
Agreement (SLA) and improve their QoS.We have shown the applicability of the ranking framework using
a case study.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Cloud computing has emerged as a paradigm to deliver on-
demand resources (e.g., infrastructure, platform, software, etc.) to
customers similar to other utilities (e.g., water, electricity and gas).
The three main services are provided by the Cloud computing ar-
chitecture according to the needs of IT customers [1]. Firstly, Soft-
ware as a Service (SaaS) provides access to complete applications
as a service, such as CustomerRelationshipManagement (CRM) [2].
Secondly, Platform as a Service (PaaS) provides a platform for de-
veloping other applications on top of it, such as the Google App
Engine (GAE) [3]. Finally, Infrastructure as a Service (IaaS) provides
an environment for deploying, running and managing virtual ma-
chines and storage. Technically, IaaS offers incremental scalability
(scale up and down) of computing resources and on-demand stor-
age [1].

Traditionally, small and medium enterprises (SMEs) had to
make high capital investment upfront for procuring IT infrastruc-
ture, skilled developers and system administrators, which results
in a high cost of ownership. Cloud computing aims to deliver a net-
work of virtual services so that users can access them from any-
where in theworld on subscription at competitive costs depending
on their Quality of Service (QoS) requirements [1]. Therefore, SMEs
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have no longer to invest large capital outlays in hardware to deploy
their service or human expense to operate it. In other words, Cloud
computing offers significant benefits to these businesses and com-
munities by freeing them from the low-level task of setting up IT
infrastructure and thus enablingmore focus on innovation and cre-
ating business value for their services.

Due to such business benefits offered by Cloud computing,
many organizations have started building applications on the
Cloud infrastructure and making their businesses agile by using
flexible and elastic Cloud services. But moving applications and/or
data into the Cloud is not straightforward. Numerous challenges
exist to leverage the full potential that Cloud computing promises.
These challenges are often related to the fact that existing
applications have specific requirements and characteristics that
need to be met by Cloud providers.

Other than that, with the growth of public Cloud offerings,
for Cloud customers it has become increasingly difficult to decide
which provider can fulfill their QoS requirements. Each Cloud
provider offers similar services at different prices and performance
levels with different sets of features. While one provider might be
cheap for storage services, theymay be expensive for computation.
For example, Amazon EC2 [4] offers IaaS services of the same
computing capabilities at different pricing for different regions.

Therefore, given the diversity of Cloud service offerings, an
important challenge for customers is to discover who are the
‘‘right’’ Cloud providers that can satisfy their requirements. Often,
there may be trade-offs between different functional and non-
functional requirements fulfilled by different Cloud providers. This
makes it difficult to evaluate service levels of different Cloud
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providers in an objective way such that the required quality,
reliability and security of an application can be ensured. Therefore,
it is not sufficient to just discover multiple Cloud services but it is
also important to evaluatewhich is themost suitable Cloud service.

In this context, the Cloud Service Measurement Index Consor-
tium (CSMIC) [5] has identified metrics that are combined in the
form of the Service Measurement Index (SMI), offering compara-
tive evaluation of Cloud services. These measurement indices can
be used by customers to compare different Cloud services. In this
paper, based on these identified characteristics of Cloud services,
we are taking the state of the art one step further by proposing a
framework (SMICloud) that can compare different Cloud providers
based on user requirements. The SMICloud would let users com-
pare different Cloud offerings, according to their priorities and
along several dimensions, and select whatever is appropriate to
their needs.

Several challenges are tackled in realizing a model for evalu-
ating QoS and ranking Cloud providers. The first is how to measure
various SMI attributes of a Cloud service. Many of these attributes
vary over time. For example, Virtual Machine (VM) performance
has been found to vastly vary from the promised values in the
Service Level Agreement (SLA) by Amazon [4]. However, without
having precise measurement models for each attribute, it is not
possible to compare different Cloud services or even discover
them. Therefore, SMICloud uses historical measurements and
combines them with promised values to find out the actual value
of an attribute. We also give precise metrics for each measurable
attribute.

The second challenge is how to rank the Cloud services based on
these attributes. There are two types of QoS requirements which a
user can have: functional and non-functional. Some of them cannot
be measured easily given the nature of the Cloud. Attributes like
security and user experience are not easy to quantify. Moreover,
deciding which service matches best with all functional and
nonfunctional requirements is a decision problem. It is necessary
to think critically before selection as it involves multiple criteria
and an interdependent relationship between them. This is a
problem of Multi-Criteria Decision-Making (MCDM) [6]. Each
individual parameter affects the service selection process, and
its impact on overall ranking depends on its priority in the
overall selection process. To address this problem, we propose an
Analytical Hierarchical Process (AHP) based rankingmechanism to
solve the problem of assigning weights to features considering the
interdependence between them, thus providing a much-needed
quantitative basis for the ranking of Cloud services.

The rest of the paper is organized as follows. In the next
section, we present an overview of SMI and its high level QoS
attributes. Section 3 describes the SMICloud framework with
its key components. Section 4 shows how metrics for various
quality attributes can be modeled. Section 5 presents the Cloud
ranking mechanismwhich is explained by a case study example in
Section 6. Section 7 gives a brief overview of research work related
to our work and finally we conclude this article in Section 8 with
some future work.

2. Service measurement index (SMI)

SMI attributes are designed based on the International Organi-
zation for Standardization (ISO) standards by the CSMIC consor-
tium [5]. It consists of a set of business-relevant Key Performance
Indicators (KPIs) that provide a standardized method for measur-
ing and comparing business services. The SMI framework provides
a holistic view of QoS needed by the customers for selecting a
Cloud service provider based on: Accountability, Agility, Assurance
of Service, Cost, Performance, Security and Privacy, and Usability.
There are currently no publicly availablemetrics ormethodswhich
define these KPIs and compare Cloud providers. SMI is the first
effort in this direction. The following defines these high level at-
tributes:

• Accountability—this group of QoS attributes is used to measure
various Cloud provider specific characteristics. This is impor-
tant to build the trust of a customer on any Cloud provider.
No organization will want to deploy its applications and store
their critical data in a place where there is no accountability
of security exposures and compliance. Functions critical to ac-
countability, which SMI considers when measuring and scor-
ing services, include auditability, compliance, data ownership,
provider ethicality, sustainability, etc.

• Agility—the most important advantage of Cloud computing is
that it adds to the agility of an organization. The organization
can expand and change quickly without much expenditure.
Agility in SMI is measured as a rate of change metric, showing
how quickly new capabilities are integrated into IT as needed
by the business. When considering a Cloud service’s agility,
organizationswant to understandwhether the service is elastic,
portable, adaptable, and flexible.

• Cost—the first question that arises in the mind of organizations
before switching to Cloud computing is whether it is cost-
effective or not. Therefore, cost is clearly one of the vital
attributes for IT and the business. Cost tends to be the single
most quantifiable metric today, but it is important to express
cost in the characteristics which are relevant to a particular
business organization.

• Performance—there are many different solutions offered by
Cloud providers addressing the IT needs of different organi-
zations. Each solution has different performance in terms of
functionality, service response time and accuracy. Organiza-
tions need to understand how their applications will perform
on the different Clouds and whether these deployments meet
their expectations.

• Assurance—this characteristic indicates the likelihood of a
Cloud service performing as expected or promised in the
SLA. Every organization looks to expand their business and
provide better services to their customers. Therefore, reliability,
resiliency and service stability are important factors in selecting
Cloud services.

• Security and Privacy—data protection and privacy are impor-
tant concerns for nearly every organization. Hosting data un-
der another organization’s control is always a critical issue
which requires stringent security policies employed by Cloud
providers. For instance, financial organizations generally re-
quire compliance with regulations involving data integrity and
privacy. Security and Privacy ismulti-dimensional in nature and
includes many attributes such as protecting confidentiality and
privacy, data integrity and availability.

• Usability—for the rapid adoption of Cloud services, the usability
plays an important role. The easier to use and learn a Cloud
service is, the faster an organization can switch to it. The
usability of a Cloud service can depend onmultiple factors such
as Accessibility, Installability, Learnability, and Operatibility.

3. SMICloud architecture

Wepropose the ServiceMeasurement IndexCloud framework—
SMICloud—which helps Cloud customers to find the most suitable
Cloud provider and therefore can initiate SLAs. The SMICloud
framework provides features such as service selection based on
QoS requirements and ranking of services based on previous user
experiences and performance of services. It is a decision making
tool, designed to provide assessment of Cloud services in terms
of KPIs and user requirements. Customers provide two categories
of application requirements: essential and non-essential. Essential
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Fig. 1. SMICloud framework.

requirements allow the customer to specify ‘deal-breakers’, i.e. if
a certain SMI attribute does not meet the required level, then the
service is unacceptable, regardless of how all the other attributes
are scored. The essential and non-essential requirements depend
both on customers and their application needs. For example, for
an academic user, the security level may not be an ‘essential’
requirement if their project is of no commercial significance. Based
on these requirements, SMICloud gives as an output a sorted list
of Cloud services which the customer can use to deploy their
application. Fig. 1 shows the key elements of the framework:

1. SMICloud Broker: this component is responsible for interaction
with customers and understanding their application needs.
It collects all their requirements and performs discovery and
ranking of suitable services using other components such
as the SMICalculator and Ranking systems. SLA Management
is the component that keeps track of customers’ SLAs with
Cloud providers and their fulfillment history. The Ranking
System ranks the services selected by the Cloud Broker which
are appropriate for user needs. The SMI Calculator computes
the various KPIs which are used by the ranking system for
prioritizing Cloud services.

2. Monitoring: this component first discovers Cloud services that
can satisfy users’ essential QoS requirements. Then, it monitors
the performance of the Cloud services, for example for IaaS it
monitors the speed of VMs, memory, scaling latency, storage
performance, network latency and available bandwidth. It also
keeps track of how SLA requirements of previous customers are
being satisfied by the Cloud provider. For this layer, many tools
are available, some of which we discuss in the related work
section.

3. Service Catalogue: stores the services and their features
advertised by various Cloud providers.

The two important issues in building the framework, as previously
mentioned, are the measurement of various SMI KPIs and the
ranking of Cloud services based on these measurements. In the
next section, we present a QoS model for IaaS providers based on
SMI KPIs. This model can be easily extended for SaaS and PaaS.

4. Quality model for IaaS provider

Cloud computing services can be evaluated based on qualitative
and quantitative KPIs. Qualitative are those KPIs which cannot
be quantified and are mostly inferred based on user experiences.
Quantitative are those which can be measured using software
and hardware monitoring tools. For example, providers’ ethicality
and security attributes are qualitative in nature. Since these
KPIs represent generic Cloud services, only some of them are
important for particular applications and Cloud services. For
example, the installability attribute in usability is more relevant
to IaaS providers than SaaS providers since in SaaS there is
almost no installation on the customer end. In addition, the
same KPI can have different definitions based on the service.
Some of these parameters depend on customer applications and
some are independent. For example, suitability is dependent on
the customer while flexibility is determined by the provider.
Therefore, it is complex to define precisely the SMI values for a
provider, particularly when there are many parameters involved
and parameter definitions also depend on many sub-attributes.
Here we give some example definitions for the most important
quantifiable KPIs, particularly in the context of IaaS. However,most
of these proposed metrics are valid for other types of services. The
modeling of qualitative attributes is beyond the scope of this paper.

4.1. Proposed metrics for cloud KPIs

4.1.1. Service response time
The efficiency of a service availability can bemeasured in terms

of the response time, i.e. in the case of IaaS, how fast the service
can be made available for usage. For example, if a user requests a
virtual machine from a Cloud provider, then the service response
time will represent the time taken by the Cloud provider to serve
this request. This includes provisioning the VM, booting the VM,
assigning an IP address and starting application deployment. The
service response time depends on various sub-factors such as
average response time, maximum response time promised by the
service provider, and the percentage of time this response time
level is missed.

• Average Response Time is given by


i Ti/n where Ti is time
between when user i requested for an IaaS service and when
it is actually available and n is the total number of IaaS service
requests.

• Maximum Response Time is the maximum promised response
time by the Cloud provider for the service.

• Response Time Failure is given by the percentage of occasions
when the response time was higher than the promised
maximum response time. Therefore, it is given by 100(n′/n),
where n′ is the number of occasions when the service provider
was not able to fulfill their promise.

4.1.2. Sustainability
Sustainability is defined in terms of the environmental impact

of the Cloud service used. It can bemeasured as the average carbon
footprint or energy efficiency of the Cloud service. The property
of Sustainability is classified as an Accountability attribute, which
is used to measure properties related to the service provider
organization itself independent of services being provided.

The carbon footprint metric is complex and depends on many
factors. Therefore, SMICloud can get these values using Carbon
calculators such as PUE Calculator [7]. Some of the well-known
metrics that quantify various aspects of a Cloud datacenter can be
used to calculate the energy efficiency and carbon footprint of a
Cloud datacenter:

• DCiE and PUE: these are the most famous metrics used
to measure energy efficiency of a Cloud computing service.
DCiE (Data Center Infrastructure Efficiency) is defined as the
percentage of the total facility power that goes to the IT
equipment (primarily compute, storage, and network). PUE
(Power Usage Efficiency) is the inverse of DCIE and is generally
greater than one.
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• DPPE (Data Center Performance per Energy) correlates the
performance of the datacenter with carbon emissions. It is
computed using the following formula:
DPPE = Data Center Work Carbon Energy

= ITEU × ITEE ×
1

PUE
×

1
1 − GEC

where

ITEU =
Total Measured Energy of IT [KWh]

Total Specification Energy IT (by manufacturer)[KWh]
ITEE

=
a


Server Capacity + b


Storage Capacity + c


NW capacity
Total Specification Energy IT (by manufacturer)[KWh]

GEC =
Green Energy

DC Total Power Consumption
.

In the above formulation, ITEU represents the IT equipment
utilization, ITEE represents the IT equipment energy efficiency,
PUE represents the efficiency of the physical infrastructure and
GEC represents the penetration of renewable (green) energy
into the system. ITEU is the average utilization factor of all IT
equipment included in the datacenter and can be considered
as the degree of energy saving by virtual techniques and
operational techniques that utilize the available IT equipment
capacity without waste. ITEE aims to promote energy saving by
encouraging the installation of equipmentwith high processing
capacity per unit of electric power. Parameters a, b, c areweight
coefficients.

4.1.3. Suitability
Suitability is defined as the degree to which a customer’s

requirements aremet by a Cloud provider. There are two sub-cases
before we can define suitability. First, if after filtering the Cloud
providers, there is more than one Cloud provider which satisfies
all the essential and non-essential requirements of the customer,
then all are suitable. Otherwise, if filtering results in an empty
Cloud provider list then those providers which satisfy the essential
features are chosen. In this case, suitability will be the degree
to which service features come closer to user requirements. The
resultant metric is:
Suitability

=
number of non-essential features provided by service

number of non-essential features required by the customer
if only essential requirements are satisfied
= 1 if all features are satisfied
= 0 otherwise.

4.1.4. Accuracy
The accuracy of the service functionality measures the degree

of proximity to the user’s actual values when using a service
compared to the expected values. For computational resources
such as Virtual Machines, accuracy’s first indicator is the number
of times the Cloud provider deviated from a promised SLA. It is
defined as the frequency of failure in fulfilling the promised SLA in
terms of Compute units, network, and storage. If fi is the number
of times the Cloud provider fails to satisfy promised values for user
i over the service time T , then accuracy frequency is defined as

i
fi
n where n is the number of previous users. Another indicator

of accuracy is the accuracy value which is defined by


i
(αt−αi)

αiTi
,

where α can be computational, network or storage unit of the
service and Ti is service time T for user i.

4.1.5. Transparency
Transparency is an important feature of Cloud services due

to the fast evolution of these services. According to CSMIC,
transparency indicates the extent to which users’ usability is
affected by any changes in service. Therefore, it can be inferred as a
time forwhich the performance of the user’s application is affected
during a change in the service. It can also be calculated in terms
of the frequency of such effects. Therefore, it can be measured by 1

n

 time for service affect i
number of such occurrences where n is the number of customers

using the service and i indicates the customer.

4.1.6. Interoperability
Interoperability is the ability of a service to interact with

other services offered either by the same provider or other
providers. It is more qualitative and can be defined by user
experience. But since it is an important parameter for Cloud
customers, we provide an approximation, which is defined as

number of platforms offered by the provider
number of platforms required by users for interoperability .

4.1.7. Availability
The availability is the percentage of time a customer can access

the service. It is given by:
(total service time)−(total time for which service was not available)

total service time .

4.1.8. Reliability
Reliability reflects how a service operates without failure

during a given time and condition. Therefore, it is defined based
on the mean time to failure promised by the Cloud provider and
previous failures experienced by the users. It is measured by:

Reliability = probability of violation × pmttf

=


1 −

numfailure
n


∗ pmttf

where numfailure is the number of users who experienced a failure
in a time interval less than promised by the Cloud provider, n is
number of users, and pmttf is the promised mean time to failure.

Reliability of storage can be defined in terms of durability, that
is the chance of failure of a storage device.

4.1.9. Stability
Stability is defined as the variability in the performance of a

service. For storage, it is the variance in the average read and write
time. For computational resources, it is the deviation from the

performance specified in SLAs, i.e.,
 αavg,i−αsla,i

T
n where α can be

computational unit, network unit or storage unit of the resource;
αavg,i is the observed average performance of the user iwho leased
the Cloud service, αsla,i is the promised values in the SLA; T is the
service time; and n is the total number of users.

4.1.10. Cost
Cost depends on two attributes: acquisition and on-going.

It is not easy to compare different prices of services as they
offer different features and thus have many dimensions. Even
the same provider offers different VMs which may satisfy users’
requirements. For instance, Amazon Cloud offers small VMs at
a lower cost than Rackspace but the amount of data storage,
bandwidth, and compute unit are quite different between two
providers [4,8]. To tackle this challenge,we defined a volumebased
metric, i.e. the cost of one unit of CPU, storage, RAM, and network
bandwidth. Therefore, if a VM is priced at p for cpu cpu units, net
network units, data data unit and RAM memory units, then the cost
of the VM is p

cpua∗netb∗datac∗RAMd where a–c , and d are weights for
each resource attribute and a + b + c + d = 1. The weight of each
attribute can vary from application to application. For example,
for some applications RAM is more important than CPU units,
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therefore for this application d > a. We can use different weights
for each attribute based on the user application. Generally users
need to transfer data which also incurs cost. Therefore, the total
on-going cost can be calculated as the sum of data communication,
storage and compute usage for that particular Cloud provider and
service.

4.1.11. Adaptability
Adaptability is the ability of the service provider to adjust

changes in services based on customers’ requests. It is defined as
the time taken to adapt to changes or upgrading the service to a
higher level (e.g. upgrading from a small Amazon VM to a medium
size Amazon VM [4]).

4.1.12. Elasticity
Elasticity is defined in terms of how much a Cloud service can

be scaled during peak times. This is defined by two attributes:
mean time taken to expand or contract the service capacity,
and maximum capacity of service. The capacity is the maximum
number of compute units that can be provided at peak times.

4.1.13. Usability
The ease of using a Cloud service is defined by the attributes

of Usability. The components such as operability, learnability,
installability and understandability can be quantified as the
average time experienced by the previous users of the Cloud
service to operate, learn, install and understand it respectively.

4.1.14. Throughput and efficiency
Throughput and efficiency are important measures to evaluate

the performance of infrastructure services provided by Clouds.
Throughput is the number of tasks completed by the Cloud service
per unit of time. It is slightly different from the Service Response
Time metric, which measures how fast the service is provided.
Throughput depends on several factors that can affect execution of
a task. Let an user application have ‘n’ tasks and they are submitted
to run on ‘m’ machines from the Cloud provider. Let Te(n,m) be
the execution time of n tasks on m machines. Let To be the time
overhead due to various factors such as infrastructure initiation
delays and inter task communication delays. Therefore, the total
throughput of a Cloud service is given by:

α =
n

Te(n,m) + To
.

The Cloud system efficiency indicates the effective utilization
of leased services. Therefore, a higher value for efficiency indicate
that the overhead will be smaller. System efficiency is given by:

Te(n,m)

Te(n,m)+To
.

4.1.15. Scalability
Scalability is important to evaluate in order to determine

whether a system can handle a large number of application re-
quests simultaneously. The ability to scale resources is an essen-
tial part of the elasticity provided by Cloud computing. However,
this metric is more applicable from the performance perspective
of user applications. The scalability has two dimensions: horizon-
tal Cloud scalability (also known as ‘scale out’) and vertical Cloud
scalability (‘scale up’). Horizontal Cloud scalability means increas-
ing Cloud resources of the same types such as initiating more vir-
tual machines of the same type during peak load. Some of the
aspects of horizontal scalability, we have already discussed during
our discussion of measuring the elasticity of Cloud services. There-
fore, to avoid overlap, here we consider only the vertical scalabil-
ity that is defined as the ability to increase the capacity of a Cloud
service such as a virtual machine by increasing resources such as
the physical memory, CPU speed, or network bandwidth. Vertical
scalability is an important quality measure for organizations who
want to move to the Cloud. If the Cloud does not allow an applica-
tion to scale well vertically, it can increase the costs of using Cloud
services, particularly at peak times. The vertical scalability can be
calculated as the maximum available increase in the resources of
a Cloud service. Let rij be resource j that needs to be enhanced on
Cloud service i. Let n andm be the number of resources assigned to
a particular Cloud service and the number of Cloud services used
by the user, respectively. The formulation of vertical scalability is:m

i
ni

j (proportion of increase in rij).

4.2. Quality model assessment

In this section, we assess usefulness and practicability of the
metrics proposed in this paper by using four criteria which are
identified from IEEE Standard 1061 [9].

• Correlation. Themetrics proposed in this paper are derived from
quality attributes, i.e., KPIs required by the user’s application.
There is a strong linear association between quality attributes
and their metrics. For example, Elasticity of a Cloud service
depends on how fast the Cloud can grow and how much it
can grow. Each of these values can affect the elasticity of an
application. If a Cloud provider takes hours to increase the
number of virtual machines, it will directly affect the QoS
expected by the users.

• Practical and computable. According to this criterion, the
proposed metrics should be computable practically with
ordinate effort or time. Except for sustainability, the metrics
proposed in this paper are easily computable by using various
publicly available performance tools [10–12].

• Consistency. Similar to the criterion correlation, the values
among quality attributes also have a strong linear association. If
quality attribute values A1, A2, An, have the relationship A1 >
A2 > An, then the corresponding metric values shall have the
relationship M1 > M2 > Mn. It can be observed that each of
the metrics is calculated based on numerical values of various
performance characteristics of the Cloud service, therefore
consistency is self-evident from the metrics.

• Discriminative power. The metric is capable of discriminating
between high-quality Cloud services (e.g., short response time)
and low-quality Cloud services (e.g., long response time). The
set of metric values associated with the former should be
significantly higher (or lower) than those associated with the
latter. Let us assume there are three values of throughput for
three Cloud services, i.e., Th1, Th2, Th3,. Since each of these
values are numerical in nature, we can have the relationship
Th1 > Th2 > Th3. Hence, in terms of the throughput, we can
conclude that the first Cloud service can be ranked as the service
which can handle the highest amount of workload.

5. Cloud service ranking

Ranking of Cloud services is one of the most important features
of the SMICloud framework. The Ranking System computes the
relative ranking values of various Cloud services based on the QoS
requirements of the customer and features of the Cloud services.
The ranking system takes into account two things before deciding
fromwhere to lease Cloud resources: (a) the service quality ranking
based onAHPand (b) the final ranking based on the cost andquality
ranking.

5.1. Service quality ranking using AHP

As discussed previously, Cloud services have many KPIs with
many attributes and sub-attributes which makes the ranking
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Fig. 2. AHP hierarchy for cloud computing.
process a complex task. This problem in the literature is defined
as multiple criteria decision making (MCDM) [13]. The traditional
weighted sum-based methods cannot be directly applied in such
a hierarchical structure of attributes. In addition, some of the
attributes do not have any numerical value, for example, security.

Without a structured technique, the evaluation of the overall
quality of different Cloud services would be very difficult given
the number of attributes involved. In addition, the challenge is
to compare each Cloud service based on each attribute, how to
quantify them and how to aggregate them in a meaningful metric.
In general, such problems fall into the category of MCDM, where
decision makers choose or rank alternatives on the basis of an
evaluation of several criteria. Decision making involves managing
trade-offs or compromises among a number of criteria that are in
conflict with each other. There are three fundamental approaches
to solving MCDM problems: Multiple Attribute Utility Theory
(MAUT), outranking and Analytic Hierarchy Process (AHP). Most
of the approaches proposed in the literature are variations of these
three basic methods.

Multiple Attribute Utility Theory (MAUT) [14] is the simplest
method that combines various preferences in the form of
multiple attribute utility functions. In MAUT, utility functions for
each criteria are combined with weighting functions of criteria.
The primary advantage of using MAUT is that the problem
is constructed as a single objective function after successful
assessment of the utility function. Thus, it becomes easy to ensure
the achievement of the best compromise solution based on the
objective function.

The outranking approach is based on the principle of the
degree of one alternative’s dominance over another [15], rather
than considering that a single best alternative can be identified.
Outranking, thus, compares the performance of alternatives for
each criterion and identifies the extent of a preference of one
alternative over another without using a prescribed scale from the
user. Outranking models are generally applied when aggregation
of criteria metrics is not easy and measurement units are
incommensurate or incomparable. The drawback of this approach
is that many times it does not reach a decision and it is relatively
complex to implement compared to other MCDM approaches.

Analytic Hierarchy Process (AHP) is one of the most widely
used mechanisms for solving problems related to MCMD. AHP is a
multi-criteria decision making approach that simplifies complex,
ill-structured problems by arranging the decision factors in a
hierarchical structure. Unlike MAUT, AHP is based on pairwise
comparisons of decision criteria rather than utility and weighting
functions. The pairwise comparison allows the decision maker
to determine the trade-offs among criteria. The advantages
of AHP over other multi-criteria methods are its flexibility,
intuitive appeal to the decision makers and its ability to check
inconsistencies [16]. In addition, AHP decomposes a decision
problem into its constituent parts and builds hierarchies of
criteria similar to KPIs in the SMI framework. AHP also helps to
capture both subjective and objective evaluation measures. While
providing a powerful mechanism for checking the consistency of
the evaluation measures and alternatives, AHP reduces bias in
decision making.

Therefore, to rank Cloud services based on multiple KPIs, we
propose a rankingmechanism based on Analytic Hierarchy Process
(AHP) [17]. There are three phases in this process: problem
decomposition, judgment of priorities, and aggregation of these
priorities. AHP gives a very flexible way for solving such problems
and can be adapted to any number of attributeswith any number of
sub-attributes. In the first phase, the ranking of a complex problem
is modeled in a hierarchy structure that specifies the interrelation
among three kinds of elements, including the overall goal, QoS
attributes and their sub-attributes, and alternative services. The
second phase consists of two parts: a pairwise comparison of QoS
attributes is done to specify their relative priorities; and a pairwise
comparison of Cloud services based on their QoS attributes to
compute their local ranks. In the final phase, for each alternative
service, the relative local ranks of all criteria are aggregated to
generate the global ranking values for all the services.

We describe the main steps to model the ranking problem in
Cloud computing and then explain the overall calculation of ranks
by a small case study example.

5.1.1. Phase 1: hierarchy structure for cloud services based on SMI
KPIs

Fig. 2 presents the Cloud service hierarchy based on SMI KPIs.
The first layer is the analysis goals, which aims to find the relative
service management index of all the Cloud services which satisfy
the essential requirements of the user. The second layer contains
hierarchies of QoS attributes, both essential and non-essential. The
bottommost layer contains the values of all the Cloud services for
all the lowest QoS attributes in the hierarchy presented in the
second layer.

5.1.2. Phase 2: computation of relative weights of each QoS and
service

To compare two Cloud services, we need to assign weights to
each attribute to take into account their relative importance. To
address this issue we consider two types of weights:

• User assigned weights using AHP’s standard method. The user
of SMI Cloud can assign weights to each of the SMI attributes
using values in some scale, for example [1..9] as suggested
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Table 1
Relative importance value.

Equal importance/quality 1
Somewhat more important/better 3
Definitely more important/better 5
Much more important/better 7
Extremely more important/better 9

in the AHP method [17], to indicate the importance of one
QoS attribute over another. The table of relative importance is
given in Table 1. This methodology was proposed originally for
calculating weights for each criteria in the AHP technique. This
can be used to assign weights to all the QoS attributes. Users
express their preferences for each attribute relative to other
attributes.

• Arbitrary user assigned weights. A user can assign weights in
their own scale rather than the one given by the AHP technique.
In this case, the sum of all weights may not be 1 which is a
requirement of AHP. For this case, we normalize all theweights.

5.1.3. Phase 3: relative value-basedweights for ranking Cloud services
These weights define the relative performance of each Cloud

service based on the values of the lowest level attributes. The
process of assigning weights is not straightforward since the
lowest level attributes can have various types of values. For
example, the value of ‘certifications’ for a particular Cloud provider
will be a list or a set. While the value of ‘elasticity’ will be a
numerical value, values of some attributes may not be known.
Therefore, the challenge is how to assign weights to each of
the attributes when they are not quantifiable. To address this
issue, we define the relative weights for ranking Cloud services
based on a strategy proposed by Tran et al. [18]. In contrast to
Tran et al.’s work, the relative weight metrics designed in our
work also consider two types of QoS requirements of Cloud users,
i.e. essential and non-essential.

Letwq be the weight given by the user for SMI attribute q. Let vi
and vj be the values of the attribute q for Cloud services i and j. Let
si and sj be the Cloud services and si/sj indicate the relative rank
of si over sj. Let vr be the required value specified by the user. To
compare both values for each Cloud service, firstly, we first need to
make sure that the dimensional units of both values are the same.
For example, if we want to compare the price of two VM instances,
then the price should be the price of 1 CPUunit, 1memory unit, and
1 hard disk unit. If it is data communication, the cost should have
the samedimension in terms of the price per 1GBof data. Secondly,
we have to compare the two values based on their types since the
attribute values can vary from Boolean to a unordered set. For each
type of attribute, a different comparison metric is proposed.

Thirdly, as discussed previously, users can specify essential and
non-essential attributes. In the SMICloud framework, it is optional
for users to specify their requirement values for non-essential
attributes. Therefore, when comparing non-essential attributes for
two services, there is a possibility that vr is not specified by the
user. Another consideration is that some of the attributes may not
be possible to monitor with SMICloud due to the non-availability
of such APIs by the Cloud provider. Our proposed relative ranking
model is flexible enough to handle this issue; if any of the attribute
values cannot be monitored then ranking weights assigned to
Cloud services are based on weight wq, or if vr is not specified by
the user, they are based on vi and vj.

The proposed relative ranking model for each type of attribute
is given by:

Boolean:

si/sj = 1 if vi ≡ vj

= wq if vj = 1 and vi = 0
= 1/wq if vj = 0 and vi = 1.
Numerical: it can be of two types, higher is better or lower
is better. If higher is better then vi

vj
is the value of si/sj. If the

lower value is better, vj
vi

is the value of si/sj. If q is a non-essential
requirement, then itmay be possible that one servicemay not have
a value. In that case, si/sj is equal to wq if vj is given, otherwise it
will be 1/wq.

Unordered set: this can occur in attributes such as portability
which may be defined by the number of platforms supported. To
assign weights to Cloud services for such types of QoS attribute
values, the size of the unordered set is considered. Let size(vi)
and size(vj) be the number of elements in the sets for services i
and j, respectively. Let size(vr) be the size of set requested by the
user for QoS attribute q. If q is an essential QoS attribute, then
the Cloud service with the largest number of elements will be
considered better and therefore higher weight will be assigned to
it. The weights for such QoS attribute type values are calculated in
the following way:

• if q is essential:

si/sj =
size(vi)

size(vj)
(1)

• if q is non-essential and if vr is specified:

si/sj =
size(vi ∩ vr)

size(vj ∩ vr)
if vj ∩ vr ≠ φ ∧ vi ∩ vr ≠ φ (2)

= 1 if vj ∩ vr ≠ φ ∧ vi ∩ vr ≡ φ (3)

= wq if vj ∩ vr ≠ φ ∨ vi ∩ vr ≡ φ (4)

= 1/wq if vj ∩ vr ≡ φ ∨ vi ∩ vr ≠ φ. (5)

Range type: many QoS attributes of Cloud services are given
as a range of values. For example, the initiation time of a Virtual
Machine can be represented as a range. In that case, if vr is the
value range required by the user, then the weights assigned to the
services are:

• if q is essential:

si/sj =
len(vi ∩ vr)

len(vj ∩ vr)
(6)

• if q is non-essential and if vr is specified:

si/sj =
len(vi ∩ vr)

len(vj ∩ vr)
if vj ∩ vr ≠ φ ∧ vi ∩ vr ≠ φ (7)

= 1 if vj ∩ vr ≡ φ ∧ vi ∩ vr ≡ φ (8)

= wq if vj ∩ vr ≠ φ ∧ vi ∩ vr ≡ φ (9)

=
1
wq

if vj ∩ vr ≡ φ ∧ vi ∩ vr ≠ φ. (10)

Using the above comparison metrics for each Cloud service,
we obtain a one-to-one comparison of each Cloud service for a
particular attribute. Thiswill result in a one-to-one relative ranking
matrix of size N × N if there are a total of N services. The relative
ranking of all the Cloud services for the particular attribute is given
by the eigenvector of the matrix. This eigenvector matrix is also
called the Relative Service Ranking Vector (RSRV).

5.1.4. Phase 4: aggregation of relative ranking for each SMI attribute
In the final phase, the relative ranking vectors of each attribute

are aggregatedwith their relativeweights assigned in Phase 2. This
aggregation process is repeated for all the attributes in the SMI
hierarchy which results in the ranking of all the Cloud services
based on KPIs.



S.K. Garg et al. / Future Generation Computer Systems 29 (2013) 1012–1023 1019
5.2. Cost–quality based ranking

In the previous section, we proposed an approach to rank the
Cloud services based on their KPIs. Although we can get from this
approach the most appropriate Cloud service that can fulfill the
user’s requirements, the cost of service also plays a key role in the
ranking process. In the literature [19], it is called the cost–value
trade-off. A good ranking system should suggest to the user the
Cloud service which gives the best QoS at the minimum cost.
Therefore, in the final step, we compute the value/cost ratio for
each service and finalize the ranking after analyzing this ratio. The
complete process of ranking is illustrated in Section 6 with a case
study.

5.3. Time complexity of AHP

In this section, we discuss the time complexity of the AHP
based-ranking algorithm, which is used by SMICloud for each user
request. The ranking mechanism consists of multiple phases. The
first phase, to construct a hierarchy structure for cloud services,
is a one time computation and will remain the same for all other
requests. Thus, the time complexity of AHP depends mainly on
the other three phases. Let there be m number of services to be
compared, and L levels of attributes; each level has Nl number of
attributes and nli is the number of sub-attributes at level l of the
ith attribute at level l − 1.

For Phase 2, we need to compute relative weights for each QoS
KPI. If the user assigns weights to KPIs between 0 and 1, then the
time complexity of computing relative weights is linear. However,
if the user assigns weights using AHP’s standard method, then
the time complexity of calculating the normalized weight vector
for a group of sub-attributes is equivalent to the time taken for
computing an eigenvector of size nli, i.e.,O((nli)

3) [17]. Therefore,
the time complexity of computing relative weights for each level
and each attribute is O(

L
l=1
Nl−1

i=1 ((nli)
3)).

For Phase 3, we calculate the relative weights of each Cloud
service for the lowest level attributes. Since there are m services,
the time complexity is O(m3NL).

For Phase 4, aggregation of all relative ranking is done from
bottom to top of the hierarchical structure constructed in the first
phase. Each level has Nl−1 groups of attributes and each group
has nli attributes that need to be aggregated for each service.
The time complexity of aggregating all attributes at a level is the
multiplication of two matrices, i.e. O(Nlm). For all attributes at all
levels, the time complexity is O(m

L
l=1 Nl).

Therefore, the worst case total time complexity of the ranking
mechanism is O(

L
l=1
Nl−1

i=1 ((nli)
3) + m3NL + m

L
l=1 Nl).

6. Case study: ranking Cloud services based on QoS require-
ments

In this case study, the computation of the service index is
done using the QoS data of three real Cloud providers. The QoS
data is collected from various evaluation studies for three IaaS
Cloud providers: Amazon EC2, Windows Azure, and Rackspace
[12,20,21]. The unavailable data such as the security level is
randomly assigned to each Cloud service. User weights are also
randomly assigned to each QoS service attribute. The top level QoS
groups are Accountability, Agility, Assurance, Cost, Performance
and Security.

In the following, we show step by step the ranking computation
process for Cloud services. The relative weighting method is
used to calculate the relative ranking of Cloud services for each
QoS attribute. For each attribute, a relative ranking matrix is
constructed using the following method. Based on the data given
in Fig. 3, the Relative Service Ranking Matrix (RSRM) for security
will be:

RSRMsecurity =

S1 S2 S3
S1 1 4/8 4/4
S2 8/4 1 8/4
S3 4/4 4/8 1.

Computing the Relative Service Ranking Vector (RSRV) for security
from the matrix RSRMsecurity, we have

RSRV security = [0.25 0.5 0.25].

Similarly, we have the relative service ranking vector of the
Accountability: RSRV Accountability = [0.25 0.5 0.25].

For Agility, there are two QoS attributes which are further
subdivided into sub-attributes. Elasticity of a Cloud service is
inferred from the time it takes to scale up. Its RSRV is given by:
RSRV Elasticity = [0.3470 0.1991 0.4538].

For each sub-attribute, i.e., CPU, memory and disk, RSRVs are
given by:

RSRV CPU = [0.3076 0.4102 0.2820]
RSRVMemory = [0.3409 0.3181 0.3409]
RSRVDisk = [0.3623 0.4373 0.2002].

CombiningRSRVvectors of sub-attributes, i.e. CPU,memory and
disk, we get the RSRM for ‘Capacity’:

RSRMcapacity =

0.30769 0.34090 0.36234
0.41025 0.31818 0.43738
0.28205 0.34090 0.20026


.

Next, we compute the relative service ranking vector for the
‘Capacity’:

RSRV capacity =

0.30769 0.34090 0.36234
0.41025 0.31818 0.43738
0.28205 0.34090 0.20026

0.5
0.3
0.2


.

Therefore,

RSRV capacity =

0.3286 0.3881 0.2834


.

Similarly, the relative service ranking vector for Agility is given
by:

RSRV agility =

0.3286 0.34701
0.3881 0.19914
0.2834 0.45384


0.6
0.4


RSRV agility =


0.336 0.3125 0.3516


.

In a similar way we can compute the relative service ranking
vector of all other top level QoS attributes, i.e., Assurance, Cost and
Performance:

RSRV assurance =

0.3812 0.2671 0.3517


RSRV cost =


0.4073 0.3338 0.2589


RSRV performance =


0.2846 0.1181 0.5973


.

Finally, we aggregate all the RSRVs of all the attributes to get
the relative service ranking matrix for three providers:

RSRM =

0.25 0.336 0.3812 0.1619 0.2846 0.25
0.5 0.3125 0.2671 0.1308 0.1181 0.5
0.25 0.3516 0.3517 0.7073 0.5973 0.25


.
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Fig. 3. Case study example.
To get the final relative service ranking vector, we multiply the
above RSRM with the weights of the top level QoS attributes:

RSRV =

0.25 0.336 0.3812 0.4073 0.2846 0.25
0.5 0.3125 0.2671 0.3338 0.1181 0.5
0.25 0.3516 0.3517 0.2589 0.5973 0.25



×


0.05
0.1
0.2
0.3
0.3
0.05

 .

Therefore, the relative ranking of all the Cloud services can
be decided based on the resultant RSRV (0.3424, 0.2702, 0.3874).
Based on the user requirements, the Cloud services are ranked as
S3 ≻ S1 ≻ S2.

SMICloud allows users to visualize the differences between
various Cloud services using Kivait graphs. For example, we can
see from Kivait graphs (Fig. 4) how different Cloud services differ
in providing best values for their KPIs. Cloud service S3 is best in
terms of performance of the machine, however it is one of the
lowest in terms of security. Therefore, S3 is a good alternative
for the scientific community where security is a lower priority
requirement and data is publicly available. On the other hand,
Cloud service S2 is the best in terms of security which may be a
key requirement for a user from a commercial organization.

In the final step, we will compute the ratio of quality (value)
versus cost. To clearly see which Cloud service gives best value at
minimum cost, we can visualize it using a graph as shown in Fig. 5.
While Cloud service S3 has the best overall quality measure, it is
also the most expensive. However, Cloud service S1 provides the
best quality/cost ratio.

6.1. Overhead of ranking mechanism

Since execution time of the rankingmechanism highly depends
on its implementation, analyzing the overhead of the ranking
mechanism is not so direct. However, we can get an estimate by
observing how much time ranking takes for different numbers of
providers. We conducted an experiment to analyze the execution
time of the ranking mechanism. We vary the number of providers
while keeping the number of SMI attributes constant. As our main
aim is to observe the overhead, we populated the data in regard
to each attribute and their weights using a uniform distribution.
In general, we can assume that for a particular type of application,
the total number of SMI attributes will be bounded by a constant,
then the worst case time complexity of our proposed mechanism
depends on the number of providers. Fig. 6 shows that even up
to 1000 service providers, the execution time is about 10 s which
clearly indicates that our proposed methodology can be used for
online selection during the acquisition of Cloud services.

7. Related work

In this section,we compare and contrast ourworkwithprevious
research work for evaluating and comparing the performance of
different Cloud services.

With the increasing popularity of Cloud computing, many
researchers studied the performance of Clouds for different types
of applications such as scientific computing, e-commerce and
web applications. For instance, Iosup et al. [22] analyzed the
performance of many-task applications on Clouds. Similarly, many
performance monitoring and analysis tools are also proposed in
the literature [22]. Our work complements these previous works
by utilizing these tools and data to rank and measure the QoS
of various Cloud services according to users’ applications. Other
works such as CloudCmp [12] proposed frameworks to compare
the performance of different Cloud services such as Amazon EC2,
Windows Azure and Rackspace. These works again focused on
comparing the low level performance of Cloud services such as CPU
and network throughput. In our work, we use performance data to
measure various QoS attributes and evaluate the relative ranking
of Cloud services.
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(a) Cloud service S1. (b) Cloud service S2.

(c) Cloud service S3.

Fig. 4. Comparison of Cloud services for different SMICloud KPIs.
Fig. 5. Case study example.

In terms of performance metrics for Cloud computing, tradi-
tional High Performance Computing (HPC) benchmarks and met-
rics are not sufficient since they focus primarily on static system
specific performance and cost [23]. Therefore, international con-
sortiums such as CSMIC are working towards defining differ-
ent measures for evaluating the performance of Clouds. Other
than that, several performance benchmarks have been proposed.
Fig. 6. Execution time of ranking mechanism.

Binning et al. propose metrics for measuring scalability, cost, peak
load handling, and the fault tolerance of Cloud environments [23].
The approach proposed by them is mainly focused on Web-based
applications using standard TPC-W benchmarks [24]. Our goal is
to develop a performance model for different Cloud computing
systems rather than for a particular application. Yahoo! Cloud
Serving Benchmark (YCSB) [25] aims to facilitate the performance
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comparison between various Cloud data serving systems (e.g.,
Cassandra, HBase). Their work mainly focused on the analysis of
performance implications on large database-intensive applications
in the Cloud. Similarwork is done byKossmann et al.whoproposed
evaluation of end-to-end scalability aspects of Cloud database ar-
chitectures [26]. They defined a set of performance and cost met-
rics for comparing the throughput, performance/cost ratio and
cost predictability of Cloud database systems for increasingly large
loads. Oh et al. proposed a framework and metrics to evaluate
the re-usability of Cloud computing services [27]. Complemen-
tary to these works, our work focuses on performance analysis
of IaaS providers, particularly in terms of their compute resource
offerings, and we proposed a wider variety of measures which
are specifically designed for Clouds. Several commercial providers
have also started offering services to conduct detailed performance
analysis of Cloud services such as CloudHarmony [11] which offers
a service that can be used to view detailed benchmarking results of
several Cloud providers. Such offerings can use our metrics to give
more comprehensive results to their customers.

Even though the evaluation and comparative ranking of various
Cloud services is quite new in the Cloud computing area, it is an old
concept in other areas such as web services. Themost relatedwork
in this area is done by Tran et al. [18]. This work also proposed
a similar AHP based ranking technique. However, the algorithm
was designed for web services and thus did not consider various
performance parameters such as VM capacity which are specific to
Cloud computing. In addition, we also define key performance and
cost metrics based on the SMI [5] framework for Cloud computing
services.

In summary, according to the authors’ best knowledge, our
work is the first to define all key performance metrics for QoS
attributes in the SMI framework and apply AHP-based ranking in
Cloud computing.

8. Conclusions and future work

Cloud computing has become an important paradigm for
outsourcing various IT needs of organizations. Currently, there
are many Cloud providers who offer different Cloud services with
different price and performance attributes. With the growing
number of Cloud offerings, even though it opens the chance to
leverage the virtually infinite computing resources of the Cloud,
it has also becomes challenging for Cloud customers to find the
best Cloud services which can satisfy their QoS requirements in
terms of parameters such as performance and security. To choose
appropriately between different Cloud services, customers need to
have a way to identify and measure key performance criteria that
are important to their applications. Therefore, the Cloud Service
Measurement Index Consortium (CSMIC) proposed a framework
based on common characteristics of Cloud services. The aim of this
consortium is to define each of the QoS attributes given in the
framework and provide a methodology for computing a relative
index for comparing different Cloud services.

In this context, this work presents the first framework,
SMICloud, to systematically measure all the QoS attributes
proposed by CSMIC and rank the Cloud services based on these
attributes. We address some key challenges by designing metrics
for each quantifiable QoS attribute for measuring precisely the
service level of each Cloud provider. We proposed an Analytical
Hierarchical Process (AHP) based ranking mechanism which
can evaluate the Cloud services based on different applications
depending on QoS requirements. Our proposed mechanism also
addresses the challenge of different dimensional units of various
QoS attributes by providing a uniform way to evaluate the relative
ranking of Cloud services for each type of QoS attribute.
We believe the SMICloud framework represents a significant
next step towards enabling accurate QoS measurement and Cloud
service selection for Cloud customers. By using the techniques
given in this work, Cloud providers can identify how they perform
compared to their competitors and therefore they can improve
their services.

In the future, wewill extend our ranking algorithm to copewith
variation in QoS attributes such as performance by adopting fuzzy
sets. We will also extend the quality model to non-quantifiable QoS
attributes. We are also planning to implement the SMI framework
and deploy on infrastructures provided by Amazon EC2 and Microsoft
Azure. We will also extend a Cloud application platform such as
Aneka [28] to utilise services of our framework while provisioning
resources and scheduling execution of applications.
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