A Portable and Fault-Tolerant Microprocessor Based on the SPARC V8
Architecture

Jiri Gaisler
European Space Agency, 2200 AG Noorwijk, Holland (until 31-12-2000)
Guaisler Research, 411 08 Goteborg, Sweden
Jiri@ gaisler.com

Abstract

The architecture and implementation of the LEON-FT
processor is presented. LEON-FT is a fault-tolerant 32-bit
processor based on the SPARC VS8 instruction set. The pro-
cessors tolerates transient SEU errors by using techniques
such as TMR registers, on-chip EDAC, parity, pipeline
restart, and forced cache miss. The first prototypes were
manufactured on the Atmel ATC35 0.35 um CMOS process,
and subjected to heavy-ion fault-injection at the Louvain
Cyclotron. The heavy-ion tests showed that all of the
injected errors (> 100,000) were successfully corrected
without timing or software impact. The device SEU thresh-
old was measured to be below 6 MeV while ion energy-lev-
els of up to 110 MeV were used for error injection.

1. Introduction

In 1997, the European Space Agency (ESA) completed
the development of a 32-bit microprocessor for embedded
space-flight applications, denoted ERC32 [1]. The ERC32
is based on the Cypress CY601 SPARC V7 processor and is
now being used in several space projects, including the con-
trol computers of the International Space Station. To meet
the mission requirements for projects beyond year 2000,
the development of a new and improved processor denoted
LEON was started in 1998. This paper presents the design
goals, architecture, built-in fault-tolerance functions and
initial test results of this processor. The LEON project was
started by ESA under the Douglas Marsh fellowship and
the ESA Technology Research Programme (TRP), and is
now continued by Gaisler Research under ESTEC contract
15102/01/NL/FM.

2. Background

European microprocessors designed for space applica-
tions have typically had three main design drivers; radia-
tion-hardness, performance and development cost. The
objectives have been to within a limited budget, develop a

device that can withstand the space radiation environment
and provide the highest possible performance on the given
semiconductor process. Other aspects, such as software
compatibility, system integration, component cost, design
reuse and future evolution have been less emphasized.
However, the conditions under which on-board computers,
and subsequently processors, are being developed are rap-
idly changing. The increased complexity and volumes of
new satellites brings forward requirements for reduced cost,
higher integration, use of commercial-off-the-shelf software
and higher performance. The increasing development pace
of microelectronic technology provides a further complica-
tion; the life-time of semiconductor processes is decreasing
to a point where it is becoming difficult to guarantee the
long-term component support required by many space pro-
grammes. In addition, demand for military components
have decreased significantly since the end of the Cold War,
reducing the number of foundries providing radiation-hard
components and manufacturing services.

The objective for the LEON processor is to meet the
requirements for performance, availability and low cost by
the use of commercial standards, design techniques and
semiconductor technology. The following design goals
were defined for the processor:

® Use of commercial semiconductor process. To reduce
cost and increase performance, it should be possible to
implement the processor on commercial, single-event
upset (SEU) sensitive semiconductor processes.

® Portability. To guarantee long-term availability, the pro-
cessor should be portable across wide range of semicon-
ductor processes with minimum cost and effort, while
maintaining functionality and performance.

® Modularity. The processor implementation should allow
reuse in system-on-a-chip (SOC) designs.

® Scalability. The processor should be usable in both low-
end and high-end applications with minimum hardware
and software overhead.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

® Standard interfaces. The processor should have stan-
dardized interfaces to simplify system integration and to
reuse commercial cores, components and tools.

® Software compatibility. The processor should be com-
patible with both the currently used ERC32 software
development tools and COTS software packages.

The target performance is 100 MIPS (peak) at 100
MHz, with a power consumption of less than 1 Watt.

3. LEON architecture

The LEON processor is based on a newly developed
SPARCVS8-compatible [6] integer unit, featuring a 5-stage
pipeline, hardware multiply and divide units, dual co-pro-
cessor interfaces, and separate instruction and data buses
(Harvard architecture). The reason to choose the SPARCVS
architecture is two-fold: to maintain software compatibility
with ERC32, and to avoid any licensing issues regarding a
re-implementation of the instruction set (SPARC is an open
architecture and can be used without license). A high-speed
AMBA [7] AHB bus is used for data transfer between the
caches and the external memory controller. A low-speed
AMBA APB bus is used to attach on-chip simpler peripher-
als such as timers, uarts, interrupt controller and I/O ports.
A block diagram can be seen in figure 1 below:

LEON processor

LEON SPARC V8
Integer unit

FPU
-

|-Cache D-Cache

AMBA AHB AHB |
I Controller |
Timers | IrqCtrl |

Memory AHB/APB
Controller UARTS| I/O port Bridge |

| AMBA APB | |

r—————-—— — — —

8/16/32/39-bits memory bus

PROM SRAM lle}

Figure 1: LEON block diagram

4. Adaptation to the space environment
4.1 Design goals

One of the main design goals for LEON was to be able
to use a single-event upset (SEU) sensitive semiconductor
process, while maintaining correct operation in the space
environment. Extensive tests on ERC32 [3] showed that
error-detection is not enough to maintain correct operation
without using spare computers or voting. To avoid the large
overhead of spare units, the decision was taken to imple-
ment on-chip fault-tolerance to both detect and remove
SEU errors. To be able to use unmodified COTS software,
the error-removal must be fully software transparent, and
with no (or negligible) performance impact. To maintain
portability, the fault-tolerance functions must be imple-
mented directly in VHDL without relying on SEU-hard-
ened technology cells.

4.2 Initial analysis

For the first LEON design, only SEU errors originating
from a direct hit in a register or memory element were
taken into account. Tests have shown that SEU errors in
combinational logic can propagate to a register on a clock
edge, but the probability of such events is low [4].

Studying the distribution of sequential cells in the
LEON design, they form three groups: single-port ram cells
used for cache memories (tag and data), dual or triple-port
rams used for the processor register file, and synchronous
D-flip-flops used for all remaining storage such as state
machines, pipeline registers and status/control functions.
Different types of SEU protection has been used for these
three groups, based on their usage in the system.

4.3 Cache memories

Large cache memories are vital for high performance,
and are typically in the critical (timing) path of a processor.
This is indeed true for LEON which due to portability rea-
sons uses standard synchronous ram cells rather than spe-
cially-designed cache rams. To minimize complexity and
timing overhead, the cache rams are provided with simple
error-detection in form of one or two parity bits for each tag
or data word. The parity bits are written simultaneously
with the associated tag or data, and checked on each access.
If a parity error is detected during a cache access, a cache
miss is forced and the (uncorrupted) data is fetched from
external memory. The data cache uses write-through policy,
and a second copy of the data is thus always available. No
timing penalty occurs since parity checking is performed in
parallel with tag checking.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

In dense ram blocks, it is possible that one SEU hit can
cause multiple errors [10], typically in adjacent cells. If the
bits in the ram block are geometrically organized as a
matrix with one word per line, a multiple error could occur
in the same word and potentially not be detected by one
parity bit (a single parity bit can only detect odd number of
errors). To handle such ram cells, LEON can be configured
to use two parity bits per tag and data word, one for odd and
one for even data bits. A double error in any adjacent cells
can then be detected. In rams with data words geometri-
cally interleaved (i.e. no adjacent bits belongs to the same
word), one parity bit is sufficient to detect double errors.

4.4 Processor register file

The SPARC architecture uses registers in windows of 32
(16 overlapping). A typical 8-window implementation con-
tains 136 32-bit integer registers and 32 32-bits floating-
point registers. Most SPARC instructions uses two source
and one destination operand, and the LEON processor
therefore uses a three-port register file. To detect SEU
errors, each word can be protected using one parity bit, two
parity bits or a (32,7) BCH [9] checksum. The protection
bits are generated in the write stage of the pipeline and writ-
ten together with the corresponding data. The register file is
read in the decode stage, but checking is done in the exe-
cute stage in parallel with instruction execution to avoid
timing penalties in the decode stage. If a correctable error is
detected (fig. 2C), the pipeline is flushed and the erroneous
operand data is corrected and written back to the register
file (instead of the erroneous instruction result). The pipe-
line is then restarted at the point of the failing instruction.
The restart operation is identical to taking a trap with the
exception that a jump is made to the address of the failed

A. Normal execution

instruction rather than to a trap vector. The time for the
complete restart operation takes 4 clock cycles, the same as
for taking a normal trap. If an uncorrectable error is
detected (fig 2D), a register error trap is generated. The
implementation overhead for the pipeline restart is small
since the logic for normal trap handling is used. Figure 2B
shows the pipeline behavior for a normal trap.

The register file has two read-ports, and two error-detec-
tion units are implemented. The register file has one write
port, and only one correction unit is needed. This means
that if more than one correctable error occurs, the instruc-
tion will be restarted once for each error, correcting and
storing one register value each time. In worst-case, a dou-
ble-store instruction that use four individual registers can
be restarted up to four times, correcting one register value
at a time.

Most standard-cell ram-libraries do not include three-
port rams, and the register file is then implemented as two
parallel two-port rams with the write-ports connected
together. In such case, the cheaper parity coding can be use
to not only detect errors but also to correct them. Both two-
port rams have the same content, and when a parity error is
detected on one read port (i.e. in one memory) error correc-
tion is performed by copying the value from the error-free
memory to the failed memory. During the copy operation,
the (presumed) error-free ram is also checked for errors, if
an error is found an uncorrectable error trap is generated.

Although the implemented protection scheme (parity or
BCH) has no timing impact, performance of double-store
instructions can be slightly affected. This is because the
write-buffer in the data cache will delay the request of the
memory bus one clock cycle in order not to start any mem-
ory store cycle before the second store data word has been
checked and (potentially) corrected.

B. Normal trap operation (INST2 trapped)

FETCH INST1 INST2
DECODE INST1
EXECUTE
MEMORY

WRITE

C. Redfile error detection/correction (INST2 restarted)

FETCH INST1 INST2
DECODE INST1
EXECUTE
MEMORY

WRITE

INST3

INST2

INST1

INST3

INST2

INST1

INST4

INST3

INST2

INST1

INST4

INST3

CHECK

INST1

INST4

INST3

INST2

INST1

INST5

INST4

INST3

CORR.

INST1

INST4

INST3

INST2

FLUSH

FLUSH

FLUSH

FLUSH

UPDATE

INST4

INST3

INST2

INST4

INST3

INST2

FETCH INST1 INST2 INST3 INST4 INST5 FLUSH TA1 TA2
DECODE INST1 INST2 INST3 INST4 FLUSH TA1
EXECUTE INST1 INST2 INST3 FLUSH

MEMORY

WRITE

INST1

TRAP

INST1

D. Uncorrectable redfile error, error trap

FLUSH

TRAP

FETCH INST1 INST2 INST3 INST4 INST5 FLUSH TA1 TA2
DECODE INST1 INST2 INST3 INST4 FLUSH TA1
EXECUTE INST1 CHECK INST3 FLUSH

MEMORY

WRITE

Figure 2: Pipeline operation during traps and errors

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

INST1

ERROR.

INST1

FLUSH

TRAP

YF]',F.

COMPUTER
SOCIETY

4.5 Flip-flops

The processor contains approximately 2,500 flip-flops,
used for temporary storage and state machines. To protect
against SEU errors, each on-chip register can be imple-
mented using triple modular redundancy (TMR). The flip-
flops are continuously clocked, and any SEU register error
will automatically be removed within one clock cycle while
the output of the voter will maintain the correct (glitch-free)
value. To further increase robustness, each of the three
lanes of the TMR registers can have separate clock-trees
(figure 3). An SEU hit in one clock-tree can therefore be
tolerated even if the data of a complete lane of 2,500 regis-
ters is corrupted. On the following clock edge, all errors
will be removed when new data is clocked in. An SEU hit
in the (single) clock pad is not tolerated since it will propa-
gate to all three clock-trees. However, the large feature size
and capacitance in the main clock buffer makes such an

event unlikely.

D b|m =

DD i I

Clock pad — I I
P ol Orr

K3 Db =
I I
Clock trees]
P ol I
a'as L = Vel

Figure 3: TMR register with separate clock trees

4.6 External memory

The external memory is protected using an on-chip
EDAC (error-detection and correction) unit. The EDAC
implements a standard (32,7) BCH code, correcting one
and detecting two errors per 32-bit word. Error-detection
and correction is done during the re-fill of the caches with-
out timing penalties. The caches operate in parallel with the
processor, and parts of a cache line can be filled on specula-
tion without being requested by the processor. It is there-
fore not always desirable to signal an uncorrectable EDAC
error to the processor since the failed data might in fact
never be used. To solve this problem, the caches implement
sub-blocking [8], with one valid bit per 32-bit data word. If
an uncorrectable error is detected, the corresponding valid
bit is not set, but the remaining of the cache line is still
filled. If the processor accesses the failed data (or instruc-
tion), a cache miss will occur since the valid bit is not set.
The data is re-fetched and the memory error is propagated
to the processor which will take a corresponding data/
instruction error trap. The taken trap will then always be

‘precise’, and software recovery by roll-back/roll-forward
is simplified since no instructions have been executed
beyond the error.

4.7 Master/Checker mode

The processor implements a checker mode, which
allows two LEON processors to operate concurrently in
master/checker configuration. In the checker mode, all out-
puts are disabled and the internal values which should have
been driven are compared to the values which are driven by
the master device. A discrepancy will assert an error output
on the checker device. This feature can be used in applica-
tions with extremely high requirements on error-detection,
but is mostly used during SEU testing [5]. Note that the
correction of register file or cache memory errors will also
result in a master/checker error since the execution in the
two processor will be skewed. This limits the usage of the
master/checker configuration, since a reset is necessary to
synchronize the two processors.

4.8 Software considerations

The data in caches and register file is only checked for
errors when accessed, and the probability of undetected
multiple errors will increase if stored data is not regularly
used. Most tasking kernels (such as VxWorks or RTEMS)
writes all active register windows to the stack on each task
switch, which will automatically correct any latent errors in
the process. Error build-up in the register file should thus
not be a problem. The caches are not flushed on task
switches, but with a reasonably large program, all cache
contents should be regularly replaced or accessed, and any
latent errors over-written. There is however no easy way of
determining for how long a cache line might stay active in
the cache without being accessed. In small programs, a
cache flush could therefore periodically be performed to
force a refresh of all cache contents.

5. Implementation
5.1 Design style and portability

The LEON processor is implemented as a high-level
VHDL model, fully synthesisable with common synthesis
tools such as Synopsys, Synplify and Leonardo. The model
is extensively configurable through a configuration pack-
age. Options such as cache size and organization, multiplier
implementation, target technology, speed/area trade-off and
fault-tolerance scheme can be set by editing constants in the
configuration package.

The only technology-specific cells used in the design are
ram mega-cells for cache memories and register file, and

IFI',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

pads. To keep the design portable, a package with wrappers
is made for each technology, providing a uniform interface
between the processor and the custom technology cells.
Porting LEON to a new target technology only consists of
making a new wrapper package for the target technology.
The design is fully synchronous, has only one clock, and
uses only registered inputs and outputs. This makes synthe-
sis simple, and improves portability further.

5.2 Synthesis overhead - Atmel ATC25

Making the model highly configurable makes it possible
to quickly analyze the impact of the fault-tolerance func-
tions. In table 1 below, the synthesis results for an FPU-less
LEON configuration is shown for the Atmel ATC25 (0.25
pm) CMOS technology. The the core area is given for a
standard configuration versus a configuration with fault-tol-
erance. The two configurations are functionally identical
but the fault-tolerant version uses TMR on all flip-flops, 2
parity bits on the cache rams, and 7-bit BCH code on the
register file.The area overhead for the LEON core without
ram blocks is around 100%. This was expected since a
TMR cell is approximately 4 times the size of a normal flip-
flop (3x flip-flops + voter), and a non-TMR configuration
uses 20% of the area for flip-flops. The overhead including
ram cells is only 39% since the overhead for parity and
BCH checkbits is lower. This particular configuration is
heavily pad-limited on a 0.25 um process, and if manufac-
tured, the area overhead at chip level would in fact be 0%.
The timing penalty for the fault-tolerant version is the extra
delay through the TMR voter, approximately two gate-
delays or 8% of the cycle time.

TABLE 1. LEON synthesis results on Atmel ATC25

Area | Areaincl.
Module (mmz) FT Increase
Integer unit (+ mul/div) 0.86 1.61 87%
Cache controllers 0.17 0.35 105%
Peripheral units 0.45 0.90 100%
Register file (136x32) 0.19 0.24 26%
Cache mem. (16 Kbyte) 2.42 2.59 7%
Total 4.09 5.69 39%

5.3 LEON-Express

The first silicon implementation of LEON was made on
the Atmel ATC35 process. The device was code-named
‘LEON-Express’ and was manufactured in January 2001. A
standard-cell library without any SEU hardening features

was used. The chip is roughly 40 mm? and operates at 50
MHz (military temperature, worst-case conditions). The
purpose of the LEON-Express device was to validate the

operation of the LEON processor and demonstrate the
implemented fault-tolerance techniques, it will not be com-
mercialized. Figure 4 shows the floorplan. The device is
pad-limited and to minimize manufacturing costs, only
three metal layers were used.

Figure 4: LEON-Express floor-plan

6. Heavy-ion error injection

To test the SEU protection methods, the LEON-Express
device was submitted to heavy-ion error injection at the
Louvain Cyclotron Facility in Belgium. The purpose of the
tests was to measure the SEU sensitivity of the device to
ions at different energy levels, and to assess the efficiency
of the fault-tolerance logic. A test board with two LEON
devices was designed, connected in master/checker mode.
The built-in master/checker comparators of LEON makes it
possible to run the device at full speed and yet compare the
outputs on each clock cycle. Figure 5 below shows the SEU
test board (checker device not mounted).

Three type of test programs were used: IUTEST that
continuously checks the register file and caches memories
for errors, PARANOIA that checks the FPU operation, and
CNCF which is based on real spacecraft navigation soft-
ware. Each test program is self-checking and calculates a
checksum of all operations that are made. The register file
and cache memories are provided with on-chip error-moni-
toring counters that increment automatically after each cor-
rected SEU error. The test software continuously reports
the value of these counters to an external host computer that

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

counts the number of errors in each ram type, as well as any No undetected errors or other anomalies occurred and a

software checksum errors. total of 4,500 errors were detected and corrected. The

During the heavy-ion injection, the master device was cross-section (SEU sensitive area) depends on software
submitted to the ion beam while the compare error signal activity and ion LET, and the maximum (0.1 cm?) was mea-
from the slave was monitored for compare errors. When a sured when running the IUTEST program using an LET of

compare error is detected, the current software cycle is
completed and the checksum is verified to control that cor-
rection has been done successfully. The error counters are
also inspected to verify that the compare error originated
from a correction operation and not from an undetected
(and uncorrected error).

The first round of tests were made with effective Linear
Transfer Energies (LET) between 6 and 110 MeV, using ion

110 MeV. Compared to the ram size of 10 mm?, this means
that 10% of the ram cell area is sensitive to SEU hits. The
cross-section for the flip-flops could not be measured since
no SEU monitoring capability is implemented in the TMR

cells. Limiting the flux to 400 ions/s/cm? during the first
round of tests was necessary to be able to count all errors
accurately. A reset and re-initialisation of the test system
takes around 50 milli-seconds, and must be significantly
lower than the average error rate.

Having obtained data to determine the cross-section,
additional test were made at an ion flux between 2,000 -

5,000 ions/s/cm? using an LET of 110 MeV. At these levels,
20 - 50 errors/second occurred in the ram cells. Several runs

fluxes from 75 - 400 ions/s/cm?. During each run, 10E5
particles were injected into the device. The number of
resulting errors are shown in table 2 below. The ITE stands
for instruction cache tag error, IDE for instruction cache
data error, DTE for data cache tag error, DDE for data
cache data error, and RFE for register file error.

Table 2: LEON-Express SEU error, runs of 10E5 particles

TEST | LET | ITE | IDE | DTE | DDE | RFE | Total | X-sect
U 586 | 10 35 13 44 0 102 | 1.02E-03
U 827 | 16 58 12 84 6 176 | 2.04E-03
U 141 | 24 124 | 31 113 27 319 |[3.19E-03
U 141 | 33 142 | 32 124 | 35 366 |3.66E-03
U 282 | 50 | 227 59 | 245 | 44 | 625 [6.25E-03
U 559 | 50 170 | 53 220 | 42 | 535 [5.35E-03
U 110 83 318 | 103 | 440 | 71 | 1015 | 1.02E-2

PAR | 14.1 | 30 65 13 12 25 145 | 1.45E-03
PAR | 282 | 34 81 15 28 36 194 | 1.94E-03
PAR | 559 | 45 94 27 31 45 242 | 2.42E-03
PAR | 110 | 95 157 50 67 76 | 445 |4.45E-03
CNCF | 14.1 | 23 44 17 51 28 163 | 1.63E-03
CNCF | 14.1 28 49 27 70 23 197 |1.97E-03 Figure 5: LEON-Express SEU test board

LEON SEU (IU) LEON SEU (PARANOIA)

1.00E-06 1.00E-06

1.00E-07 : *ITE 1.00E-07 £

5 * "pE

n

= IDE
.. = DTE
L oDPE
1.00E-08 RFE

L

Y DDE
®RFE

1.00E-08

Cross Section / Cell (cm?)
o
®
]
=
m
Cross Section / Cell (cm?)
el u| o0

1.00E-09
0.00 20.00 40.00 60.00 80.00 100.00 120.00

1.00E-09
0.00 20.00 40.00 60.00 80.00 100.00 120.00

LET [MeV/(mg/cm?)]

LET [MeV/(mg/cm?)]

Figure 6: Cross-section vs. LET, IUTEST Figure 7: Cross-section vs. LET, PARANOIA

YF]',F.

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02) COMPUTER
0-7695-1597-5/02 $17.00 © 2002 IEEE SOCIETY

were made using all three test programs, injecting 10E6 and
10E7 particles (10E4 - 10ES errors) per test run. The CNCF
and PARANOIA test programs executed without undetec-
ted errors, but the IUTEST showed on average 5 error traps
or software failures per 10E7 particles. Ion fluxes below

2,000/s/cm? did not give any failures, and it is believed that
the undetected errors were due to multiple-error build-up in
the caches. Worst-case condition for ion flux in the space
environment is many magnitudes lower, and this effect is
thus not considered a problem. The cross-section per bit for
the different ram types is plotted in figure 6 and 7.

7. Alternative implementations

LEON is by no means the first implementation of an
fault-tolerant RISC processor, previous implementations
includes the IBM S/390 G5 [11] and the Intel Itanium [12].
The IBM processor solves error-detection by duplicating
the complete pipeline until the last write-stage, in which the
result from the two pipelines is compared. In case of a dis-
crepancy, the state of the processor is not updated and the
pipeline is restarted at the point of the falling instruction.
The area overhead is similar to LEON, 100%. The IBM
scheme is better in the sense that timing is not affected by a
TMR voter and that all types of errors are detected, not only
soft errors in register. The scheme is worse from a real-time
point-of-view since restarting of the pipeline takes several
thousand clock cycles. The scheme can also only be used
where (functional) timing is not important, bus interfaces or
timer units can not use this scheme without loosing their
function.

The Intel implementation a mix of ECC and parity codes
to detect and correct soft errors in caches and TLB memo-
ries. State machine registers are not protected.

8. Conclusion

Well-know error-detection and correction techniques
such as parity, BCH and TMR have been used to implement
an SEU-tolerant processor on a non-hardened semiconduc-
tor process. By choosing the appropriate detection and cor-
rection method for each specific memory type, the area
overhead has been kept low. Fault-injection using heavy-
ions has proved the efficiency of the fault-tolerance con-
cept, although some anomalies were detected at high parti-
cle fluxes. The portable design style and simple synthesis
method insures long-term availability and quick access to
new semiconductor processes.

9. Future directions

During 2002, the LEON processor is planned to be
implemented and manufactured on the Atmel ATC25 pro-

cess (0.25 wum CMOS). The ATC25 device will have larger
caches than the ATC35 version, and include additional
functions such as a PCI interface and an on-chip debug unit.

The final die size will be around 20 mm?2 (pad-limited) and
the device is planned to operate at 100 MHz.

Although no indications of combinational SEU errors
were seen for the ATC35 device, the separate clock trees for
the TMR cells makes it possible to form a pulse filter on the
inputs to the flip-flops. By skewing the three clocks, any
pulse shorter than the skew would only be latched by one of
the flip-flops in the cell, and be removed by the voter. The
feasibility of such a scheme will be further investigated.

10. Acknowledgements

The author would like to thank R.Creasey, P.Plancke,
A.Pouponnot (ESA), Prof. J.Torin (Chalmers University),
T.Corbiere, J.Tellier and G.Rouxel (Atmel-Nantes) for their
support and encouragement during this work.

11. References

[1] J.Gaisler, “Concurrent error-detection and modular fault-toler-
ance in an 32-bit processing core for space applications”, FTCS-
24, June 1994 (Austin, USA).

[2] J.Gaisler, “Evaluation of a 32-bit microprocessor with built-in
concurrent error-detection”, FTSC-27, June 1997 (Seattle, USA)
[3] J.Gaisler & T.Vardanega, “Lessons Learned from the Imple-
mentation of On-Board Tolerance to Physical Faults in Ada”, The
International Journal of Computer Systems: Science & Engineer-
ing, January 2000.

[4] P.Linden et al., “On latching probability of particles induced
transients in combinatorial networks”, FTCS-24, 1994.

[5] R.Koga et al., “Techniques of microprocessor testing and SEU
rate prediction”, IEEE Trans Nucl. Sci., NS-32, 1985

[6] “The SPARC Architecture Manual Version 8, SPARC Interna-
tional, Prentice Hall, 1992

[7] “AMBA Specification, version 2.0”, ARM-IHI 0011A, ARM
Limited, 1999.

[8] J.Handy, “The Cache Memory Book”, Academic Press, 1993.
[9] C.L.Chen et al., “Error-correcting codes for Semiconductor
Memory Applications: A-state-of -the-art-review”, IBM J Res De-
velopment, page 124-132, March 1984.

[10] J.A.Zoutendyk et al., “Characterization of Multiple-Bit Errors
from Single-Ion Tracks in Integrated Circuits”, IEEE Trans Nucl.
Sci,. December 1989.

[11] M.A.Check et al. “Custom S/390 G5 and G6 microproces-
sors”, IBM Journal of Research and Dev., Vol 43, No 5/6, 1999.
[12] N.Quach, “High availability and Reliability in Itanium Proc-
essors”’, IEEE Micro, Vol 20, No 5, 2000.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Dependable Systems and Networks (DSN’02)
0-7695-1597-5/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

