
Proceedings of the Seventh International Conference on Machine Learning and Cybernetics, Kunming, 12-15 July 2008

A SECURE DOMAIN NAME SYSTEM BASED ON INTRUSION TOLERANCE

WEI ZHOU1, 2, LIU CHEN3, 4

1School of Computer, Wuhan University, Wuhan 430072, China
2Department of computer science, Huazhong Normal University, Wuhan 430079, China

3Department of Electronic and Information Engineering, Huazhong Normal University, Wuhan 430079, China
4College of Electric Engineering and Information Technology, Wuhan Institute of Technology, Wuhan 430073, China

E-MAIL: w.zhou@mail.ccnu.edu.cn, chenliu97@163.com

Abstract:
DNS was not designed to be secure. The biggest security

hole in DNS is the lack of support for data integrity
authentication, source authentication, and authorization. In
this paper, a secure DNS scheme based on intrusion tolerance
is proposed. This secure DNS is intrusion-tolerant by using
Byzantine intrusion tolerant technique and voting mechanism.
The scheme provides high integrity, robustness, and
availability of service in the presence of arbitrary failures,
including failures due to malicious attacks. The proposed
scheme consists of 3f+1 tightly coupled replicas per name
server and guarantees safety and liveness properties of the
system assuming no more than f replicas are faulty. By adding
authentification of client and using symmetric key
cryptography, the system guarantees a secure communication
mechanism by providing a way to detect whether DNS data
has been corrupted during communication over the Internet.
Experimental results show that the scheme can provide a
much higher degree of security and reliability, as well or even
better than an implementation of the DNS security extension.

Keywords:
DNS; Intrusion tolerance; Byzantine fault tolerance;

Voting

1. Introduction

DNS (Domain Name System) is an important part of
Internet, which uses caching technology, distributed
databases, and multi-level structure to realize the
conversion between domain name and IP. At the beginning
of being designed, DNS did not take into account security
issues[1]. DNS system also has shown some flaws in
application, such as vulnerability to phishing attacks. One
of the reasons is that DNS server and client communicate
by connectionless UDP, and there is no mechanism to judge
whether the data packets are received from legitimate
sources or not, which exposed DNS to the danger of various
attacks. Furthermore, instead of verifying legitimacy of the
responses from DNS server, DNS client will take by default

that these responses are correct and are sent by legitimate
DNS server. This also adds the dangers of DNS being
attacked.

In order to solve the security problems of DNS, in 1997
IETF proposed Security Extensions for DNS[2][3], i.e.
DNSSEC. The purpose of DNSSEC is to help the domain
name resolving system of the client to find out whether the
domain name it resolved is indeed valid or not, so that user
can avoid the disclosure of his important information to
attackers on phishing webs. As the security extensions
based on current DNS, DNSSEC can effectively prevent
DNS spoofing and secure legitimacy of the DNS records
the client received.

However, as the entire DNS system on the Internet is
already a very large distributed database of domain name
records, the full realization of the conversion to DNSSEC
requires a lot of time and workload. In addition, DNSSEC
only provides a verification of the authenticity of DNS
records, which can only provide a limited guarantee for the
user’s communications security. On the other hand,
DNSSEC adds digital signatures to DNS requests and
responses, which increases the communication traffic and
complexity. This may lead to a new denial of service
attacks based on encryption algorithm. So DNSSEC system
is far from prevalent in reality till now.

Intrusion tolerance[4][5] is a new method that has evolved
in recent years in the field of network security. Unlike
traditional security methods, intrusion tolerance[6] assumes
that there are unknown vulnerabilities in the system. Its
basic idea is not to try to ward off invasion, but to tolerate
the invasion when it happens, and continue providing
services[7][8] with even lower performance. In this paper, a
DNS system scheme based on intrusion tolerance is
proposed. This DNS system is able to tolerate intrusion
using redundant servers, Byzantine intrusion tolerant
technique and voting mechanism. And a DNS system
named as SDNS based on intrusion tolerance is designed
according this scheme.

3535

2. SDNS Model

The entire SDNS system is composed of proxy server
group, DNS name server group, a voting server and a
configuration management server, as shown in Figure 1.

User’s request gets to a proxy server through outer
defense. The proxy server transfers the request to the DNS
name servers. The entrance of the whole system is the
proxy server, which first analyzes the legitimacy of the
request, then sends verified legitimate request to the
primary one of DNS name servers. The communication and
management between DNS servers uses improved
Byzantine fault tolerant algorithm based on state machine
replication. DNS name servers send the result to the voting
server. Then the voting server sends back its trusted result
based on voting mechanism to the proxy server, which
transmits it to the client.

Figure1 System architecture of SDNS
As the entrance, proxy server is the bottleneck of the

whole system and may also become easy targets of attack.
In the proxy server group，one of the proxy server is
assigned to act as primary proxy server, and others are
assigned to act as secondary proxy servers, which together
constitute a proxy server group. When the system is running,
the primary proxy server transfers data between users and
the system, while the secondary proxy servers monitoring
the operation of the primary proxy server. Once the primary
proxy server fails, one of the secondary proxy servers will
be selected to be a new primary proxy server. Thus the
balance of the load is achieved and the reliability of the

In order to keep

system becomes better.

proxy servers and DNS servers
ope

group consists of several name
ser

 server consists of voting
ma

 of configuration management is to
rec

3. Design for SDNS

3.1. Byzantine Fault Tolerant Algorithm

In the current DNS system, there is one primary name
ser

rating normally, IDS is deployed in the system. IDS
detects attacks from outside and monitors the running
condition of the servers. When abnormality happens, IDS
will trigger configuration management module to
reconfigure the system.

DNS name server
vers, of which one is primary name server and others are

secondary name servers. We use an improved Byzantine
fault tolerant algorithm to ensure correct name service. The
algorithm is described in 3.1.

The voting management
nagement module and voting module. The main

functions of voting management module are as follows: (1)
it receives information from DNS servers, votes according
voting algorithm and sends the voting result to proxy
servers, analyzes all the information to distinguish the
faulty servers from the normal ones; (2) it can change some
of the parameters of the voting module (for example the
threshold of the voting module) to improve the performance
of voting algorithms.

The main function
onfigure the system according the requests of other parts

of the system, such as voting management server and DNS
servers. The reconfiguration may be dynamic or static,
which makes the system has better adaptability after its
failure or being invaded, and adds difficulty to the
attackers’ consecutive attacks.

Internet

Proxy
Servers

Outer
Defense

Name Server

State
Machine

Management
. . .

Voting Management Server

Voting
Module

Voting
Management

Module

Configeration
Management

IDS

Name Server Name Server

State
Machine

Management

State
Machine

Management

ver and a number of secondary name servers for a zone.
The primary name server reads the zone data form a file on
its host. The secondary name servers get the zone data from
the primary. When a new host is added to a zone, or some
records need to be changed, the administrator will modify
the database in the primary server. The secondary server
queries the primary server and if the primary server
contains new data, the secondary obtains the new data and
updates its database. This is referred as a zone transfer.
DNS uses this simple replica mode to improve availability.
If one name server is down, resolvers can still use other
name servers. The DNS generally can only tolerant fail-stop
failures. But fail-stop tolerance is not strong enough for the
DNS, because malicious attacks are becoming increasingly
common. This kind of attack can cause faulty nodes to act
arbitrarily, which are far beyond the fail-stop failure model.
If a DNS can tolerate Byzantine failures[9][10], it will be a

3536

hacker-tolerant system, i.e., it will continue to provide
correct service even when some of its components are
controlled by an attacker.

Under a Byzantine fault model, a faulty node may act
arbit

hanism where
repl

of the DNS
nam

ion between client, proxy server, voting
serv

akes a resolving request by sending
Kp(R

lica receive the message Kr(Request,
t, c)

dcasts the client c’s request to
a

paper we use session key Ks encrypts the
m

eplicas is as follow:
ry assigns a

s

rarily, this is in contrast to the more restrictive fail-stop
model. Although only f + 1 replicas are required to tolerate
f Byzantine faults if communication is assumed to be
synchronous and replicas can authenticate messages, this
synchrony assumption is not practical for environments like
the Internet. In BFT(Byzantine failure tolerance) methods,
most approaches use replicas. The basic idea is to make
replicas of the process that we want to protect, run them on
different hosts, and synchronize their behaviors with
appropriate messages exchanged between them. We assume
that at most f hosts may be attacked when there are at least
3f+1 replicas. Even if some of the hosts, not more than f,
are hijacked and the replicas running on them are controlled
by a cracker, other replicas maintain their original behavior,
and we recognize f+1 behaviors that are the same as the
original from 2f+1 results of replicas. Here, we can always
expect only 2f+1 results because controlled agents may not
indefinitely give results. Castro and Liskov’s method is also
based on this replica system. Castro–Liskov Practical
Byzantine Fault Tolerance (CLBFT)[11][12] is a BFT
state-machine-replication protocol and library
implementation that can be used to create client–server
Byzantine-fault-tolerant applications. Unfortunately, at
present, their method assumes some structures in
communication between processes, such as the server client
model, where replication is applied only to servers, and
clients have to be reliable. But clients may be hackers, they
can implement man-in-middle attacks. In this paper, we
propose an improved CLBFT method for DNS, in which
the DNS server will authentificate the client.

The method uses a primary-backup mec
icas move through a succession of configurations called

views[5]. In a view, one replica is designated as the primary
and the others are backups. The algorithm chooses the
primary p of a view[12] v such that p= v mod |R| where
views are numbered consecutively. View changes are
carried out to provide liveness by allowing the system to
make progress when the current primary fails.

In our algorithm, we call name servers
e servers group as replicas. The primary name server is

called the primary replica, other name servers are called
backup servers.

Communicat
er and replica is as follow:

(1)START phase
A client c m
equest, t, c, m) message to the primary proxy server.

Timestamp t is used to ensure exactly-once semantics for

the execution of client requests. Timestamps for c’s
requests are totally ordered such that later requests have
higher timestamps than earlier ones. Kp is the public key of
the primary proxy server. c is the client number. m is the
signature for the request of client c. As the primary proxy
server receive Kp(Request, t, c, m),it verifies the signature
of client c. If the signature is correct, the primary proxy
server transfers the request to the primary replica by
sending Kr(Request, t, c) message. Kr is the public key of
the primary replica. If the signature is wrong, the primary
proxy server drops the message.
(2) REQUEST phase
 As the primary rep

 from the primary proxy server, it decrypts the message
and extract the request. The primary server assigns a
sequence number n to the request and sends n to the
primary proxy server. The sequence number n is
progressive increasing and not repetitive. The primary
proxy server generates a session Ks and sends the encrypted
Ks with the client c’s public key Kc to c. After c receives the
encrypted Ks, it gets Ks. The primary proxy server stores the
data (c, n, Ks) into its local database.
(3)REPLY and END phase
 The primary replica broa
ll backup replicas. After three communication stages of

PRE-PREPARE, PREPARE and COMMIT among replicas,
the results from the replicas will be sent to the voting server.
The voting server votes for the results from the replicas
with voting algorithm. If the result is trusted, the voting
server sends the result message (Reply, t, c, n) back to the
primary proxy server. The primary proxy server gets the
session key Ks from local database according to c and n,
then send the encrypted results with Ks to the client c. After
receiving the result encrypted with Ks from the primary
proxy server, the client c decrypts the message and get the
trusted result. If there is no trusted result when voting, the
client c will send the request to the primary proxy server
again. The primary proxy server broadcasts the request
directly to all replicas, and REPLY and END phase will
start again.
 In this
essage between the client and the proxy server with

symmetric encryption, which is much shorter and less
costly than a public key
Communication among r
 (1) After receiving a request, the prima
equence number to it and to all of the replicas broadcasts a

PRE-PREPARE message including the request and the
number. The message format is PRE-PREPARE(v, n, m)
where v is a number indicating the current primary, n is a
sequence number and m is a request message. We omit the
formats of the protocol messages introduced below.

3537

(2) When a replica receives a PRE-PREPARE message, it
b

same 2f+1 valid
P

1 valid COMMIT
m

1 is
t

roadcasts a PREPARE message with essentially the same
content as the PRE-PREPARE message.
(3) When a replica receives the
REPARE messages from different replicas, the replica

enters a prepared state for that request and sequence number.
Then the replica broadcasts a COMMIT message with the
same content as the PREPARE message.
(4) When a replica receives the same 2f+
essages from different replicas, it enters a committed state

for that request and sequence number. Then the replica
executes the request and returns the result to the client.
In Figure2, there is 3f+1=4 replicas where f=1.Replica
he primary replica, the others are backup replicas. Replica4

has Byzantine fault. As is show in the figure, after three
phase of START,REQUEST,REPLY and END, the client
gets the trusted result.

REQU
EST

PRE-
PREPA

RE
PREPA

RED COMMIT REPLAY

Proxy
server

Replica 4

Replica 3

Replica 2

Client

Voting
server

Replica 1

START END

Figure2. Result producing process

3.2. Voting algorithm

Voting algorithm is key for voting server. In the
d

he set of N replicas’
r

Construct a partition V1, V2, …, Vk of X where for
each

t V be the set in the partition V , … , Vk of the
large

+1, then select any value from V as
votin

ect the largest
set

4. Experiment and results

According to the scheme above, we realized SDNS

o lient resolve program-the
resolver and DNS service program-name server and agent
ser

thentication Security

[13][14]

esign of SDNS, we use formalized large number voting
algorithm. The algorithm is as follow:
Let X = (x1 , x2 , x3 , …, xN) denotes t
esults.

(1)
i the set Vi is maximal with respect to the property that

for any x and y in Vi, d(x, y)≤a. where a is the voting
threshold.

(2) Le 1
st cardinality.
(3) If |V|≥f
g output, where |V| denotes the cardinality of the set V,

f denotes the max number of faulty replicas.
The main idea of the algorithm is to sel
V whose cardinality ≥ f+1 from N replicas’ results.

As f is the max number of faulty replicas, if the cardinality
of V is larger than f, any element of V is a trusted result.

prot type system, including c

vice program-agent server and service voting
program-voting server, and all the programs were
implemented using c language. The communications
between reclicas relied on CLBFT Replication Base. The
security comparison of SDNS, DNSSEC and traditional
DNS is shown in table 1. The response time an server time
comparisons of SDNS, DNSSEC and traditional DNS are
shown in table 2 and table 3, taking the most simple A and
NS record resolving as an example. The response time is
the response latency observed by the client from the time
the client sends a request to the time it accepts a result and
successfully interprets it. The server time is measured from
the time the server receives a request to the time the result
is ready to be sent.

Table 1 Security comparison of DNS,SNSSEC and SDNS

ystem AuS

Traditional none low DNS

D S
private key

medium， t tolerate
Byzantine fault NSSEC ign RR with zone but can no

SDNS
Signa ong
client , and high，can t Byzantine ture am

proxy
DNS servers

olerate
fault

Table erforma for d

System se time
（ms） Server time（ms）

2 P nce comparison

Respon

the Resolving for A Recor

Traditional DNS 0.012 0.254
DNSSEC 0.623 0.023

SDNS 0.517 0.031

Table 3 compari or the Res for NS
Record

Response time

 cePerforman son f olving

System
（ms） Server time（ms）

Traditional DNS 0.654 0.028
DNSSEC 0.826 0.062
SDNS 1.217 0.110

The re e r
SNDS ar than nal DNS a SSEC, but
the secur S is superi

In this paper, we have proposed a secure domain name
e system provides high integrity,

robustness, and availability of service in the presence of
arbit

sults show that th
arger

esponse time and server time of
e a little l

DN
traditio nd DN

ity of S or to traditional DNS and DNSSEC.

5. Conclusions

system (SDNS). Th

rary failures, including failures due to malicious
attacks. The proposed system consists of 3f+1 tightly

3538

coupled replicas per name server and guarantees safety and
liveness properties of the system assuming no more than f
replicas are faulty.

By incorporating an improved CLBFT algorithm and
voting mechanism in our solution, we not only make the
system intrusion-tolerant, but also ensure correct name
serv

e number of keys servers to be remembered. We
plan

[1] HUANG Jian-ye, WANG Feng, “The DNS Security
ution Polices”, Journal of Kunming University,

Vol 17,No.4, pp.41-43,Jul.2006.

Information Assurance and

[5]

Dependable

[6]

lerant Systems: IEEE Computer Society

[7]

Workshop,Boston,MA,pp.24-26,October

[8]

X Security Symopsium, Washington

[9]

nd System, Vol 4, No.3,
pp.382-401, Jul.1982.

mputer Science, 1999.

[12] ractical

 , New Orleans, pp. 173-186, February

[13]

a, pp.1117-1127,March 2001.
an

ice even when a fraction of the replicas fail. Unlike the
current insecure DNS and its security extension, our system
tolerates server failures due to benign faults and malicious
attacks.

Symmetric cryptography requires that every
communication pair share a session key, which could lead
to a hug

 to add session key cache mechanism to the system.

References

and Sol

[2] D.Eastlake, “Secure domain name system dynamic
update”, Technical Report DARPA-Internet RFC
2137,CyberCash Inc., April 1997.

[3] D.Eastlake, “Domain name system security
extensions”, Technical Report DARPA-Internet RFC
2535,IBM, March 1999.

[4] F.Wang, “SITAR:A Scalable Intrusion Tolerance
Archittecture for Distributed Service”, Proceeding of
the IEEE Workshop on
Security, New York, pp.38-45,June 2001.
S.Brant, F.Wang, “Design and Implementation of
Adaptive Reconfiguration for Intrusion Tolerant
Systems”, International Conference on
Systems and Networks, Washington D.C.,pp.253-306,
June 2002.
Luenam, P. and P. Liu, “The Design of an Adaptive
Intrusion Tolerant Database System”, Foundations of
Intrusion To
Press, 2003.
Partha P.Pal,Franklin Webber, “Intrusion Tolerant
Systems”,Proceding of the IEEE Information
Survivability
2000.
Wu T,Malkin M,and Boneh D, “Building Intrusion
Tolerant Applications”, Proceeding of the 8th
USENI
D.C,pp.7-91,August 1999.
L. Lamport, R. Shostak, M. Pease, “The Byzantine
Generals Problem”, ACM Transactions on
Programming Languages a

[10] M. Castro and B. Liskov, “A Correctness Proof for a
Practical Byzantine-Fault-Tolerant Replication
Algorithm”, Technical Memo MIT/LCS/TM-590,
MIT Laboratory for Co

[11] M. Castro, “Practical Byzantine Fault Tolerance”, Ph.
D. Thesis, Massachusetts Institute of Technology,
MA,Jan.2000.
Miguel Castro and Barbara Liskov, “P
Byzantine Fault Tolerance”, Proceedings of the Third
Symposium on Operating Systems Design and
Implementation
1999.
[Ben Hardekopf,Kevin Kwiat, “Secure and
Fault-Tolerant Voting in Distributed
Systems”,Proceeding of IEEE Aerospace Conference,
Montan

[14] YU Y -ping. “The research and design of intrusion
tolerant system based on voting mechanism”, Master.
Thesis, Xidian University, Xi’an, May.2005.

3539

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

