
Agent-Based Service Composition in Cloud Computing

J. Octavio Gutierrez-Garcia and Kwang-Mong Sim

Gwangju Institute of Science and Technology,

Gwangju 500-712 Republic of Korea

joseogg@gmail.com, kmsim@gist.ac.kr

Abstract. In a Cloud-computing environment, consumers, brokers, and service

providers interact to achieve their individual purposes. In this regard, service

providers offer a pool of resources wrapped as web services, which should be

composed by broker agents to provide a single virtualized service to Cloud con-

sumers. In this study, an agent-based test bed for simulating Cloud-computing

environments is developed. Each Cloud participant is represented by an agent,

whose behavior is defined by means of colored Petri nets. The relationship be-

tween web services and service providers is modeled using object Petri nets.

Both Petri net formalisms are combined to support a design methodology for

defining concurrent and parallel service choreographies. This results in the crea-

tion of a dynamic agent-based service composition algorithm. The simulation

results indicate that service composition is achieved with a linear time complex-

ity despite dealing with interleaving choreographies and synchronization of

heterogeneous services.

Keywords: web service composition; Cloud computing; multi-agent systems.

1 Introduction

Cloud computing service composition must support dynamic reconfiguration and

automatic reaction to new requirements as well as dealing with distributed, self-

interested, and autonomous parties such as service providers, brokers, and Cloud

consumers; these parties should interact and coordinate among themselves to achieve

a proper service composition. This accentuates the need for an agent-based solution.

Agents are autonomous problem solvers that can act flexibly (e.g., interacting with

other agents through negotiation and cooperation) in a dynamic environment (e.g., a

Cloud-computing environment).

Service composition can scale Cloud computing in two dimensions [3]: horizontal

and vertical. Horizontal service composition refers to the composition of usually het-

erogeneous services that may be located in several Clouds. Vertical service composi-

tion deals with the composition of homogenous services to increase the capacity of a

given Cloud node.

This work proposes an agent-based algorithm that supports both horizontal and

vertical service compositions with linear time complexity (as demonstrated in section

4). In addition, each agent is only aware of the requirement it fulfills and possible

requirements it may need from external agents. Furthermore, the algorithm handles

T.-h. Kim et al. (Eds.): GDC/CA 2010, CCIS 121, pp. 1–10, 2010.

© Springer-Verlag Berlin Heidelberg 2010

mailto:kmsim@gist.ac.kr

2 J.O. Gutierrez-Garcia and K.M. Sim

the composition of atomic and complex web services. Moreover, a formal

methodology for defining web services’ workflows that handles synchronization and

coordination aspects is defined through the use of colored Petri nets [2] and object

Petri nets [5], which are endowed with a strong mathematical background.

The significance of this paper is that, to the best of the authors’ knowledge, this

work is the earliest research that adopts a multi-agent approach for supporting Cloud

service composition.

This paper is structured as follows: Section 2 presents the agent-based architecture

used to compose services. Section 3 presents Petri net models defined for the involved

agents. Section 4 presents experimental results in both horizontal and vertical scenar-

ios. Section 5 presents a comparison with related work and the conclusions.

2 An Agent-Based Cloud Service Composition Architecture

The multi-agent system architecture that supports Cloud computing service composi-

tion is presented in Fig. 1. The elements of the architecture are as follows:

Fig. 1. Multi-agent system architecture

A service ontology is a formal representation of services and of the atomic

requirements that these services can fulfill.

A directory is a listing of available service provider agents. Each entry associated

to a service provider contains its name, location (e.g., URI address), and capabilities.

A semantic web service (SWS) is a web service whose definition is mapped to an

ontology, which characterizes the service and its application domain.

A consumer agent (CA) submits a consumer’s interests to broker agents.

A resource agent (RA) orchestrates a semantic web service. Furthermore, a RA

contains a reference to an atomic requirement, which can be fulfilled by its SWS.

A service provider agent (SPA) handles a set of RAs. Its main function is to
coordinate and synchronize RAs.

A broker agent (BA) accepts requests from consumer agents and creates a single

virtualized service by means of composing services deployed on one or more Clouds.

A BA utilizes consumer requirements to search for SPAs; it then starts the composi-

tion process by adopting the well-known contract net protocol [4] for selecting ser-

vices and allocating tasks. However, an ad-hoc mechanism to collect results overrides

Agent-Based Service Composition in Cloud Computing 3

the one provided by the contract net protocol. This ad-hoc mechanism synchronizes

and coordinates interleaving service choreographies. In addition, as a result of the

process for satisfying requirements, SPAs may need additional requirements, e.g., a

computing provider may need a storage address to store its results. These require-

ments are handed to the BA. Further details of the composition algorithm are

presented in section 3.

3 Petri Net Agent Models

In the context of agent interaction, transitions in colored Petri net models represent

either the reception or transmission of messages, and internal actions performed by

the agent. In contrast, places represent the interaction states.

3.1 Consumer Agents

The model of a consumer agent (Fig. 2) represents a Cloud consumer, whose actions
and events are described as follows: (i) transition t1 decomposes consumer require-

ments into a set of atomic requirements. Input: An initial mark from p1. Output: A set

of requirements (Req) in p2; (ii) transition t2 requests requirements to a BA. Input: A

set of requirements (Req) from p2; (iii) transition t3 receives results from the BA.

Output: A set of resolved requirements (Req, Output) in p3; (iv) transition t4 composes

the atomic outputs into a single virtualized service. Input: A set of resolved require-
ments (Req, Output) from p3. Output: A single virtualized service represented by an

uncolored dot in p4; (v) transition t5 restarts the consumer agent’s behavior. Input: An

uncolored dot from p4. Output: An uncolored dot (initial mark) in p1.

The firing sequence σ = {t1, t2, t3, t4, t5} represents a complete cycle of the model,

from providing consumer requirements to the reception of a single virtualized service.

Fig. 2. Consumer agent model

3.2 Resource Agents

Resource agents are token objects, i.e., inner Petri nets contained in a system net. This

follows the approach of Petri nets within Petri nets [5]. The system net is represented

by the service provider agent model. The definition of resource agent models is lim-

ited to a set of design patterns that makes use of synchronized transitions to maintain

a consistent behavior with respect to the system net that contains them.

4 J.O. Gutierrez-Garcia and K.M. Sim

The main structure of the resource agent model has two places and two synchro-
nized transitions st1 and st2 (see Fig. 3). Transition st1 synchronizes the beginning of

the workflow with the reception of a request message from a SPA. This transition has
a condition denoted by if [Req = X1] in order to be triggered. The condition consists

of accepting requirements that can be handled by the SWS in question. Transition st2

reports the output to the outer level Petri net (a SPA).

Fig. 3. Resource agent model

In addition to the main structure, a resource agent model has two design patterns

(Fig. 3). Design pattern I allows a RA to ask for an internal requirement (st4) and wait

until this requirement is resolved by another RA (st5) belonging to the same SPA.

Pattern II is used to ask for external requirements (st3); i.e., these requirements cannot

be resolved by any existing token object of the current service provider system net. In
this case, the SPA requests the requirement to a BA, which searches for another
SPA who can fulfill the requirement. Both patterns I and II share the synchronized
transition st5 for receiving results and proceeding with the internal workflow.

Fig. 4. Service provider agent model

Agent-Based Service Composition in Cloud Computing 5

3.3 Service Provider Agents

The model of a service provider agent (Fig. 4) represents the system net that contains

RAs. The SPA coordinates independent and evolving resource agent tokens by means

of five synchronized transitions.

Transition st1 synchronizes the assignment of unfulfilled requirements to available

RAs. Input: It needs two tokens, one unfulfilled requirement (Req) from p2, and one

available resource agent (RA) from p1. The selection of an appropriate RA is deter-

mined by the condition if [p1.Req = p2.Req]. In addition, a RA is available if its

transition RA.st1 is enabled. Output: An evolved resource agent token in p1.

Transition st2 releases a resource agent by receiving its resolved requirement. This

sends the RA back to its initial state, ready to accept another requirement. Input: A RA

whose synchronized transition RA.st2 is enabled in p1. Output: An available RA in p1

and a resolved requirement (Req, Output), which is placed in either place p4 or p5.

This is according to the conditions attached to the output arcs regarding the type of

requirement if [Req.type = Internal/External].

Transition st3 receives request messages from RAs asking for external require-

ments. Input: A resource agent token RA whose synchronized transition RA.st3 is

enabled in p1. Output: An evolved resource agent token in p1, and a requirement and

its requester (R, Req) in both place p3 and p6; the token in p3 is used to keep a record,

and the token in p6 is used to send an external request.

Transition st4 receives request messages from RAs asking for internal require-

ments. Input: A resource agent token RA whose synchronized transition RA.st4 is

enabled in p1. Output: An evolved resource agent token in p1; a requirement (Req) to

be internally solicited in p2; and a record of the request (R, Req) in p3.

Transition st5 coordinates the delivery of recently arrived and fulfilled require-
ments to the corresponding resource agents. Input: It needs three tokens, one fulfilled

requirement (Req, Output) from p4; one previous solicited requirement (R, Req) from

p3; and one RA from p1. The preconditions are [p4.Req = p3.Req] and that RA.st5 is

enabled in p1. Output: An evolved resource agent token in p1.

In addition, local transitions are used to interact with the BA:

Transition t1 accepts requests from BAs. Output: A requirement (Req) in p2.

Transition t2 reports resolved requirements to BAs. Input: A resolved requirement

(Req, Output) from p5.
Transition t3 requests requirements to BAs. Input: A request (R, Req) from p6.
Transition t4 receives outputs from previous requests. Output: A resolved

requirement (Req, Output) in p4.

A firing sequence σa = {t1, st1, st2, t2} represents the simplest coordination process

for a SPA that contains one resource agent. Transition t1 accepts a request from a BA

to fulfill a requirement. Then, transition st1 assigns the new requirement to an

available RA. Transition st2 receives the resultant output from the RA, and finally,
transition t2 delivers the output to the BA. This firing sequence is assumed to be ac-

companied by a resource agent’s firing sequence σb = {st1, t1, st2}, which corresponds

to the model of the resource agent contained in Fig. 4. The resultant interleaving

firing sequence is σ = {σa.t1, σa.st1, σb.st1, σb.t1, σb.st2, σa.st2, σa.t2}.

6 J.O. Gutierrez-Garcia and K.M. Sim

3.4 Broker Agents

The model of a broker agent (Fig. 5) functions as a mediator among service provider

and consumer agents. Its main functionality is contained in the following transitions:

Fig. 5. Broker agent model

Transition t1 receives requests from Cloud consumers. Output: An unresolved

requirement (R, Req) in p1.
Transition t2 denotes the selection of SPAs based on the contract net protocol. The

participants are all available SPAs who may fulfill the requirement(s) in question. Input:
A requirement (Req) from p6. Output: The selected SPA and the assigned requirement

(SPAi, Req) in p4.

Transition t3 represents the transmission of a request message to a SPA; the BA so-
licits the achievement of atomic requirements. Input: A requirement (Req) from p4.

Transition t4 receives outputs from previous requests. Output: A resolved requirement
(Req, Output) in p3.

Transition t5 matches previous unfulfilled requests with incoming resolved re-
quirements. Input: It needs two tokens, one unfulfilled requirement (R, Req) from p2,
and one resolved requirement (Req, Output) from p3. Accompanied by the precondi-
tion if [p3.Req = p2.Req]. Output: A resolved requirement (Req, Output) in p5.

Transition t6 informs the results to either SPAs or CAs. Input: A resolved
requirement (Req, Output) from p5.

A firing sequence σ = {t1, t7, t2, t3, t4, t5, t6} represents a service composition

solution to a consumer requirement as accepted by a BA (t1). Subsequently, the re-

quirement is assigned to an appropriate SPA (t7, t2, and t3). Finally, the BA receives

some provider’s results (t4), which are handed to the CA (t5 and t6).

4 Evaluation

A CA needs to apply several image filters to a huge amount of raw images; it then

contacts a BA, which should contract several heterogeneous SPAs to satisfy that

Agent-Based Service Composition in Cloud Computing 7

requirement. In this scenario, two different kinds of service providers are involved:

computing service providers (CSP) and massive storage service providers (MSP).

A CSP has two types of resource agents: (i) an allocator service (AS) (Fig. 6(a))

and (ii) n processing services (PS) (Fig. 6(b)). The AS decomposes a computational

task into several atomic tasks, which are handled by the PSs. Afterwards, the AS

requests its service provider (a CSP) to assign the atomic tasks to the PSs and waits

until all tasks are completed to join the outputs. At the same time, the AS divides the

task, it computes the storage needed for saving the results, and asks the CSP for a

storage address. In turn, the CSP passes the request to its BA, which again initiates

the contract net protocol for contracting another SPA, which in this case is a MSP.

The MSP only has one resource agent, a storage service (SS) (Fig. 6(c)) that provides

a storage address; at the end, this is passed to the AS through the BA and correspond-

ing service provider. Finally, the BA arranges the outputs of service providers and

delivers a single virtualized service to the CA.

Fig. 6. Resource agents involved in the example scenario

Three experiments were conducted using the agent-based test bed described in

sections 2 and 3. The test bed was implemented using the JADE agent framework [1].

4.1 Vertical Service Composition Experiment (Part A)

Objective. The first experiment was designed to explore the scalability and synchroni-

zation capabilities of the composition algorithm in vertical scenarios.

Scenario and experimental settings. A consumer agent was assumed to submit a task

that has as an attribute the number of processing resources required to complete it

(consumption level). The composition of services is carried out with different

consumption levels of the consumer’s task starting from 5 to 15, 5 being the exact

number of available services per CSP. Thus, when this number is exceeded, the syn-

chronization process of the service provider takes place in order to wait for available

8 J.O. Gutierrez-Garcia and K.M. Sim

services and then assign them to the remaining requirements. In this experiment, the

following were involved: one consumer agent, one broker agent, two MSPs, each

containing one storage service, and two CSPs, each containing one allocator service

and five processing services.

Results and observations. The number of exchanged messages increased at a constant

rate of 4 messages per processing resource needed (see Fig. 7(a)). This shows that

vertical service composition was achieved with a linear time complexity. In addition,

all services were synchronized properly even with an insufficient number of re-

sources. The number of exchanged messages is the result of adding up the required

messages for (i) registering service provider agents; (ii) accessing the directory of

services; (iii) selecting services by means of adopting the contract net protocol among

possible service providers; and (iv) composing the involved services.

Fig. 7. Experimental results

4.2 Vertical Service Composition Experiment (Part B)

Objective. The second experiment was designed to explore the efficiency of the

algorithm for parallelizing activities while dealing with heterogeneous services that

may have different capacities (e.g., different processing rates).

Scenario and experimental settings. A consumer agent was assumed to submit a task

that has the consumption level fixed to 10; however, in this case, the number of proc-

essing services contained in the CSPs was changed, starting from 1 to 10 processing

services per CSP. In addition, the processing services were designed to spend 5 s

processing each atomic task, while storage and allocator services did not take a con-

siderable amount of time to execute their workflows. In this experiment, the following

were involved: one consumer agent, one broker agent, two MSPs, each containing one

storage service, and two CSPs, each containing one allocator service and n processing

services, where 1 ≤ n ≤ 10.

Results and observations. As Fig. 7(b) shows, (i) the number of necessary messages

to compose services was constant even in the presence of scarce resources; and (ii)

the allocator service efficiently exploited the available processing services by assign-

ing the tasks in parallel. For instance, processing the consumer’s task with four

processing services, consumed 15 s; in the first 10 seconds, eight atomic tasks were

processed by the four processing services, and in the remaining 5 s, just two process-

ing services were used. This left 153 ms for composing and synchronizing. When the

Agent-Based Service Composition in Cloud Computing 9

number of processing services was from 5 to 9, the consumed time was similar, and

the milliseconds of difference were caused by message latencies. With ten resources,

the ten atomic tasks were assigned in parallel, leaving 174 ms for the composition and

synchronization processes. These results show that the proposed agent-based Cloud

service composition algorithm handles the parallelization of tasks in a effective man-

ner without involving additional messages. This parallelization was achieved even

with heterogeneous resource agents having dissimilar times/capacities to fulfill the

assigned requirements. In this regard, the execution of heterogeneous agents may

evolve independently according to their capabilities and constraints.

4.3 Horizontal Service Composition Experiment

Objective. The third experiment was designed to explore the scalability and synchro-
nization capabilities of the composition algorithm in horizontal scenarios.

Scenario and experimental settings. A consumer agent was assumed to require storing

a huge amount of data, which must be stored by different service providers. It was

first supposed that the data can be stored by one MSP, and then by two MSPs and so

on until reaching eleven MSPs. In this experiment, the following were involved: one

consumer agent, one broker agent, and n MSPs, each containing one storage service,

where 1 ≤ n ≤ 11.

Results and observations. The obtained results show that the number of exchanged mes-

sages increased at a constant rate of 13 messages per service provider added to the compo-

sition (see Fig. 7(c)). With this result, the agent-based service composition algorithm was

shown to have a linear time complexity in both vertical and horizontal scenarios. Thus, it

is suitable for handling the scalability necessary in Cloud-computing environments.

The specifications of the computer on which the experiments were carried out are

as follows: Intel Core 2 Duo E8500 3.16 & 3.17 GHz, 4 GB RAM, with a Windows

Vista Enterprise (32 bits) operating system, service pack 1.

5 Conclusions

5.1 Related Work

A previous research effort to achieve service composition in Cloud-computing envi-

ronments was carried out in [7], which addressed service composition as a combinato-

rial optimization problem considering multi-Cloud environments, where each Cloud

has a directory of available providers and their corresponding services. A search tree

is created from these directories that maps the services deployed on the Cloud; artifi-

cial intelligence planning techniques are then applied to the tree in order to achieve

the composition of atomic services. Another closely related work is [6], which pre-

sents a semantic matching algorithm that uses web services’ descriptions to match the

inputs and outputs of correlated web services.

Both approaches assume complete knowledge of all services deployed in different

Clouds. Moreover, the composition process is centralized, and only atomic web ser-

vices are considered. In contrast to [6] and [7], this work provides decentralized

10 J.O. Gutierrez-Garcia and K.M. Sim

composition for both atomic and complex web services, which may require enacting

an interaction protocol in order to fulfill their requirements.

5.2 Concluding Remarks

Throughout this research effort, the advantages of the agent paradigm as an underly-

ing framework for supporting service composition in Cloud-computing environments

were demonstrated. In addition, a Petri net–based methodology for defining web ser-

vices’ workflows capable of synchronizing concurrent and parallel execution of

atomic and complex web services was developed. This design methodology provides

a small set of requirements for assuring proper coordination and synchronization of

web services in both horizontal and vertical scenarios.

Moreover, Cloud service composition is supported in a decentralized manner; no

agent has dominant control over the others, and each agent knows only what it needs

but not how to obtain it. Furthermore, RAs can be added dynamically even when a

service composition is taking place due to the independent interfaces, which synchro-

nize the acceptance and request of requirements. This fits well with the constantly

changing Cloud infrastructure.

Finally, in the immediate future, work will be focus on deploying the agent-based
architecture in a semantic web service framework using RESTful web services.

Acknowledgments. This work was supported by the Korea Research Foundation

Grant funded by the Korean Government (MEST) (KRF-2009-220-D00092) and the

DASAN International Faculty Fund (project code: 140316).

References

1. Bellifemine, F., Poggi, A., Rimassa, G.: JADE - A FIPA-Compliant Agent Framework. In:

4th International Conference and Exhibition on the Practical Application of Intelligent

Agents and Multi-Agents, pp. 97–108 (1999)

2. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for Modelling

and Validation of Concurrent Systems. J. Softw. Tools Technol. Transf. 9(3), 213–254

(2007)

3. Mei, L., Chan, W.K., Tse, T.H.: A Tale of Clouds: Paradigm Comparisons and Some

Thoughts on Research Issues. In: Proc. of the 2008 IEEE Asia-Pacific Services Computing

Conference, pp. 464–469. IEEE Computer Society, Washington (2008)

4. Smith, R.G.: The Contract Net Protocol: High-Level Communication and Control in a Dis-

tributed Problem Solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)

5. Valk, R.: Petri Nets as Token Objects: An Introduction to Elementary Object Nets. In:

Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–25. Springer, Heidelberg

(1998)

6. Zeng, C., Guo, X., Ou, W., Han, D.: Cloud Computing Service Composition and Search

Based on Semantic. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS,

vol. 5931, pp. 290–300. Springer, Heidelberg (2009)

7. Zou, G., Chen, Y., Yang, Y., Huang, R., Xu, Y.: AI Planning and Combinatorial Optimiza-

tion for Web Service Composition in Cloud Computing. In: Proc. International Conference

on Cloud Computing and Virtualization (2010)

