

Amoeba-Based Knowledge Discovery

Toshinori Munakata1*, Masashi Aono2, Masahiko Hara2

1 Computer and Information Science Department, Cleveland State University,
Cleveland, OH, 44115, USA

t.munakata@csuohio.edu
2 RIKEN-HYU Collaboration Research Center, RIKEN Advanced Science Institute,

Wako, Saitama 351-0198, Japan
masashi.aono@riken.jp

Abstract. We propose an amoeba-based knowledge discovery or data mining system, that is
implemented using an amoeboid organism and an associated control system. The amoeba sys-
tem can be considered as one of the new non-traditional computing paradigms, and it can per-
form intriguing, massively parallel computing that utilizes the chaotic behavior of the amoeba.
Our system is a hybrid of a traditional knowledge-based unit implemented on an ordinary com-
puter with an amoeba-based search unit and an optical control unit interface. The solutions in
our system can have one-to-one mapping to solutions of other well-known areas such as neu-
ral networks and genetic algorithms. This mapping feature allows the amoeba to use and ap-
ply techniques developed in other areas. Various forms of knowledge discovery processes are
introduced. Also, a new type of knowledge discovery technique, called “autonomous meta-
problem solving,” is discussed.

Keywords: amoeba-based computing, knowledge discovery, data mining, new computing para-
digm.

* Corresponding Author. Email: t.munakata@csuohio.edu.

International Journal of Computational Science

1992-6669 (Print) 1992-6677 (Online) www.gip.hk/ijcs

 © 2010 Global Information Publisher (H.K) Co., Ltd.

2010, Vol. 4, No. 5, 453-462.

GLOBAL INFORMATION PUBLISHER 453

I Introduction

Knowledge discovery - the notion of computers automatically finding useful information is an excit-
ing and promising aspect of any application intended to be of practical use [1]. There are several
closely related areas to knowledge discovery called by different names. Data mining or knowledge
discovery in databases (KDD) primarily focus on extracting useful information from data, particu-
larly from a large amount of data. Machine learning explores techniques to make the machine learn
or get smarter by itself.

New computing paradigms - For the past 40 years computer hardware has been dominated by
the traditional CMOS (Complementary Metal-Oxide Semiconductor) or silicon-based integrated
circuits (so-called “silicon-based architecture”). Recently, computer architecture concepts based
on totally new principles other than the silicon-based technology have been given much attention.
These concepts include quantum, atomic (e.g., carbon nanotube transistors), molecular (e.g., or-
ganic), DNA, optical, micro/nanofluidic and amoeba-based computing [2]. This article proposes a
knowledge discovery scheme employing an amoeba-based system, one of the new computing par-
adigms.

2 Amoeba-Based Computing

A plasmodium of a true slime mold Physarum Polycephalum (Fig. 1a), a unicellular amoeboid
organism with a single gel layer (cellular membrane) encapsulating intracellular sol, can be re-
garded as a kind of massively parallel computer whose elements are microscopic actomyosins
(fibrous proteins) taking contracting or relaxing states. Collectively interacting actomyosins in the
gel layer generate rhythmic contraction-relaxation oscillation (period = 1~2 min) of vertical body
thickness, and their spatiotemporal oscillation pattern induces horizontal shuttle-streaming of intra-
cellular sol (velocity=~1 mm/sec) to deform the macroscopic shape. Despite its homogeneous and
decentralized structure, the amoeba exhibits integrated computational capacities in its shape de-
formation [3].

In [4-8], Aono, et al. showed that such a system can be implemented as a chaotic neurocom-
puter. Because of its slow processing speed, it is not proposed as a high-speed alternative to re-
place traditional silicon-based technology, but it is interesting from a scientific point of view for
the following reasons: (1) It is the first actual, non-silicon based implementation of a chaotic neu-
ron model; (2) It exhibits an interesting problem solving capability in which speed may not be an
issue; (3) There are many chaotic phenomena in nature such as lasers and certain properties ob-
served in atoms and molecules. The dynamic speed of these phenomena is very fast; some can
easily surpass their current silicon-based counterparts. When the problem solving techniques in
this scheme are realized in these areas, they could lead to a new fast computing paradigm. Addi-
tional unique features of amoeba-based computing are discussed below.

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER454

Fig. 1. (a) A true slime mold amoeba. (b) An Au-coated barrier resting on an agar plate. The amoeba restricts
itself inside the barrier where the agar is exposed because of its aversion to metal surfaces. (c) Ex-
perimental setup. For transmitted light imaging using a video camera (VC), a surface light source (LS)
placed beneath the sample amoeba (SM) was used to emit light of a specific wavelength, which did
not affect the amoeba’s behavior. The recorded image was processed using a personal computer (PC)
to visualize the monochrome image by using a projector (PJ). (d) Optical feedback rule: active state
xi(t) = 1 triggers light illumination yi-1 (t + 1) = yi+1 (t+1) = 1 (white light projected to yellow rectangu-
lar regions).

3 Structure and Implementation

System configuration

An amoeba-based knowledge discovery system consists of three major units, called the Amoeba-
Based Search Unit (Fig. 1b and SM in Fig. 1c), Silicon-Based KD (Knowledge Discovery) Unit
(VC and PC in Fig. 1c), and Optical Control Interface (PJ in Fig. 1c). The Amoeba-Based Search
Unit can represent, for example, a configuration < 1, 0, 0, 1, 0, 0, 1, 0 > at a specific time. The
Silicon-Based KD Unit is the command center of the entire system. It knows the target problem
and a basic strategy for finding a solution, and gives guidance to the amoeba through the Optical
Control Interface. A key element of the system is the Amoeba Unit that searches for a solution in a
unique fashion.

Representation of a configuration and a solution

In this article, a state represented by the amoeba at a specific time, such as < 1, 1, 0, 1, 0, 0, 1, 0 >,
is called a “configuration.” When a configuration sufficiently resolves the problem condition, it is
called a “solution.”

Amoeba-Based Knowledge Discovery

GLOBAL INFORMATION PUBLISHER 455

Knowledge discovery process

Some well known basic types of procedures by which knowledge discovery is performed are: classi-
fication, clustering, association, pattern recognition, and control. To perform these types of proce-
dures, specific techniques are employed. Neural networks, genetic algorithms and statistical ap-
proaches are some well known techniques. Further, these techniques are generally variations of
basic processes, such as optimization [9].

We note that many attribute-based symbolic forms of knowledge representation and data min-
ing employ the above type of configuration [9]. For example, a symbolic form of a rule: “if there
is no headache, the temperature is high, and a cough exists, then there is a cold” can be coded as <
0, 1, 1, 1 >, where the first 0 represents “there is no headache.”

The amoeba can represent configurations and solutions of neural networks, genetic algorithms,
and so on. Amoeba-based systems have also successfully solved many types of problems involv-
ing the above-mentioned processes such as optimization and constraint satisfaction. They include
the traveling salesman problem (TSP) and arranging 1s and 0s to satisfy the logical NOR function.
The core of this paper is to put all the above together. Summarizing, typical steps of an amoeba-
based knowledge discovery system are as follows:

 Given a specific application problem, select a basic type of procedure by which knowledge dis-
covery is performed, e.g., classification.

 Select a technique to be employed, e.g., neural networks, and a representation of a solution,
e.g., a string of bits.

 Identify the type of process to be performed, e.g., optimization.
 Consider representing each solution by a geometric configuration of the amoeba. They should

have one-to-one correspondence. The coding of the geometric configuration of the amoeba, e.g.,
what it means in terms of the original problem, is understood by the silicon-based KD unit, not
by the amoeba.

 Implement a knowledge discovery algorithm, either previously developed for the technique (e.g.,
backpropagation) or for a new one, in the silicon-based KD unit. Devise an appropriate optical
control scheme to drive the amoeba to search for a solution.

Given a target application problem, an amoeba is placed, and its geometric configuration is de-
termined. Then, the current configuration is fed back to the KD unit. Next, the unit determines a
desirable direction the amoeba should take and sends this information to the amoeba through the
optical control interface. The amoeba evolves to a new configuration, partially on its own spatio-
temporal dynamics and partially under the guidance of the optical stimulation. This leads to an
intriguing and unique computing paradigm. In the following, we show some examples to illustrate
amoeba-based knowledge discovery systems.

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER456

4 Specific Forms of Amoeba-Based Knowledge Discovery Systems

A. Knowledge Discovery by Means of Constraint Satisfaction Problem Solving

A small piece of the amoeba (0.75 ± 0.05 mg) cut from an individual acts only inside the star-
shaped barrier structure on an agar plate (Fig. 1b) by expanding or shrinking its multiple branches.
During our experiment, the amoeba’s total volume is kept almost constant. The amoeba’s branch
expands or shrinks at a velocity of at most 1 cm/h, as shuttlewise efflux-influx of the sol (velocity
= 1 mm/s) for the branch is iterated for several periods of the contraction-relaxation oscillation
(one period = 1–2 min).

We call the ith path of the star-shaped structure “neuron i.” Digital image processing is used to
evaluate the state of each neuron, with the amoeba’s shape being captured at specific time inter-
vals (t = 6 s) using a video camera (Fig. 1c). For each neuron i at time t, if more than a quarter of
the area of the ith neuron is occupied by the amoeba’s branch, then state 1 (active) is assigned as xi
(t) = 1, otherwise xi (t) = 0 (inactive). To start the computing, it is possible to input the arbitrary
initial configuration x1(0), x2 (0), … , xN(0), because the amoeba’s shape is freely deformable.

We develop a simple example of solving a constraint satisfaction problem to illustrate the basic
idea of our systems. The problem can be described as follows: We work on a cyclic 8-bit string,
<xi, i = 1, 8 >; the problem is to find a string that satisfies the logical NOR function; more specifi-
cally, xi = NOR(xi-1, xi+1), i = 1, 8. For example, < 1, 1, 0, 1, 0, 0, 1, 0 > is a configuration but not
a solution, and < 1, 0, 0, 1, 0, 0, 1, 0 > is a solution. We can consider this as a kind of an optimi-
zation problem. As in genetic algorithms, we can define a fitness function f as the number of bits
that satisfy the condition xi = NOR(xi-1, xi+1). The problem then is to maximize the fitness function;
a configuration with f = 8 is a solution. We see that the capabilities of our amoeba-based systems
can translate to knowledge discovery. For example, most knowledge discovery processes in ge-
netic algorithms employ this form. The size of the string can be scaled up, or each xi can assume a
fractional value on [0, 1].

In the following, we describe more about our experiment for the problem [4]. We write yi = 1
when the illumination for node i is turned On, whereas yi = 0 represents that the illumination is
turned Off. The optical control unit automatically updates the illumination according to a certain rule.
Here, we introduce the following rule for updating the illumination at 6 sec intervals (Fig. 1d): The
node i is illuminated (yi(t+1) = 1) to be inactive (xi(t+1) = 0), if at least one of its adjacent nodes is
active (xi-1(t) = 1 or xi+1(t) = 1); otherwise (xi-1(t) = xi+1(t) = 0) nonilluminated (yi(t+1) = 0) to be
active (xi(t+1) = 1). This rule establishes the above-mentioned constraint satisfaction problem:
Find the system configuration < x1, x2, . . . , x8 > such that all nodes satisfy xi = NOR(xi-1, xi+1).

With respect to solutions to this problem, there are 10 configurations consisting of rotation
symmetries of < 1, 0, 1, 0, 1, 0, 1, 0 > and < 1, 0, 0, 1, 0, 0, 1, 0 >, that are expected to be stably
maintained. The reason is that amoeba taking one of these configurations is no longer forced to
reshape by illumination and can terminate the expansion of its branches inside all nonilluminated
nodes. Any configuration can be clearly judged as a solution, distinguished from a transient state,
if and only if all nodes satisfy the following condition: yi(t+1) = 1 - xi(t+1).

Amoeba-Based Knowledge Discovery

GLOBAL INFORMATION PUBLISHER 457

It should be noticed that concurrent processing of the circularly connected NOR-operators,
analogous to Dijkstra's “dining philosophers problem”, entails deadlock-like unsolvability of the
problem when all operations are executed in a synchronous manner [3]. Suppose that all branches
expand or shrink with a uniform velocity. From the initial configuration <0, 0, 0, 0, 0, 0, 0, 0>
evoking no illumination, the synchronous growth movements of all branches will lead to <1, 1, 1,
1, 1, 1, 1, 1> in which all neurons are illuminated. Then, all branches shall shrink uniformly to
evacuate from the illuminations, until they reach the initial configuration allowing them to expand
again. In this manner, the system can never reach a solution, as the synchronous movements result
in perpetual oscillation between <0, 0, 0, 0, 0, 0, 0, 0> and <1, 1, 1, 1, 1, 1, 1, 1>. The synchro-
nous movements would be inevitable, if the amoeba’s oscillatory behavior could only produce
periodic spatiotemporal patterns with circular symmetry. However, our system can actually solve
the problem, because the amoeba produces chaotic oscillatory behavior involving spontaneous sym-
metry breaking.

The experiment was started from the initial configuration <0, 0, 0, 0, 0, 0, 0, 0> by placing the
amoeba’s spherical piece at the center of the star-shaped structure as shown in Fig. 1b. In the early
stages, the spherical amoeba flattened into a disc-like shape and expanded its thin periphery hori-
zontally with circular symmetry.

The symmetry, however, was spontaneously broken as a defective site was created in the pe-
riphery. The defective site was exclusively expanded at a velocity relatively larger than that of the
rest of the periphery and developed into a distinct branch having enough occupying area inside
neuron 8 to evoke illuminations, as shown in Fig. 2a. Owing to the asynchronously fluctuated
movements, the amoeba reached the solution shown in Fig. 2b. The solution was stably main-
tained for about 4 h. This result implies that our amoeba-based computer can surely perform the
circularly-connected NOR functions, as well as other arbitrary logic functions [7]. We can also see
that our amoeba-based system can solve problems involving logic. Logic is well known to repre-
sent the basic process of the brain functions; Prolog – PROgramming in LOGic is a major AI
language.

Interestingly, the long-maintained stabilizing mode of the solution was spontaneously switched
to the destabilizing mode even though no explicit external perturbation was applied. As shown in
Fig. 2c, two branches suddenly emerged and started to invade illuminated regions, contrary to
their photoavoidance response. While aggressive expansion of branch 7 was sustained under illu-
mination, branch 8 was shrunk by illumination, and the once-reached solution was destabilized.

After the branches performed their asynchronously fluctuated movements, the amoeba stabi-
lized its shape again at another solution, as shown in Fig. 2d. The second solution was maintained
for about 1 h. Fig. 2e shows that the spontaneous destabilization occurred once more. This conse-
quently led the amoeba to search for the third solution, which was maintained for about 7 h until
we quit the observation, as shown in Fig. 2f. During this 16 h experimental trial, the amoeba suc-
cessively searched three solutions and broke through the deadlock by repeatedly switching be-
tween the stabilizing and destabilizing modes.

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER458

Fig. 2. Experimentally observed problem-solving process. (a) Transient configuration <0,0,0,0,0,0,0,1>. White
light was projected to yellow rectangular regions (No 1 and No. 7). By means of digital image proc-
essing, the phase of vertical thickness oscillation was binarized into the relaxing (thickness increasing)
and contracting (decreasing) states, represented by the blue and red pixels, respectively. Phase wave
propagated from the center to periphery with symmetry breaking. (b) First-reached solution <0,1,0,
0,1,0,0,1>. (c) Spontaneous destabilization of solution (b). Arrows indicate the growth directions of
the newly emerged branches expanding under illumination contrary to photoavoidance. (d) Secon-
dreached solution <0, 1, 0, 0, 1, 0, 1, 0>. (e) Spontaneous destabilization. (f) Third-reached solution <
0, 1, 0, 1, 0, 1, 0, 1 >.

B. Knowledge Discovery by Means of Optimization

As mentioned earlier, many knowledge discovery systems are based on optimization processes.
The Traveling Salesman Problem (TSP) is a well known, hard optimization problem. We have
examined whether our amoeba-based system is capable of solving the four-city TSP, and found
that the system reached an optimal solution with a high probability. In this system, we apply the
well-known neural network algorithm developed by Hopfield and Tank [9]. We have confirmed
that our amoeba-based neurocomputer has high optimization capability in solving TSP [5] and that
the amoeba might be characterized as a set of coupled chaotic oscillators [6]. In theoretical models
of coupled chaotic neurons, it has already been shown that chaotic dynamics is highly efficient for
solving combinatorial optimization problems [1, 8].

In our amoeba-based TSP solving, each node of a configuration represents a degree of visiting;
it is either 1, 0 or between. Again, such a configuration can be represented by directly utilizing the
continuous values of amoeba. Such an approach may be effective for an extended TSP, possibly
involving various conditions and constraints. For example, cities should not necessarily be geo-
graphical locations, but instead represent some set of tasks in broad sense. Each task may be car-

Amoeba-Based Knowledge Discovery

GLOBAL INFORMATION PUBLISHER 459

ried out 100%, 0%, or partially somewhere between. We will drive the configuration to our desir-
able direction through the optical control unit.

C. Knowledge Discovery Based on Neural Network Models

Many neural network models, which aim at simulating the human brain, are applied as various
forms of data mining techniques. Here we discuss the backpropagation model, the one that has
been employed most extensively for industrial and commercial applications. As a simple special
case, we consider a perceptron (i.e., no hidden layers) with three input layer neurons and one out-
put layer neuron. This case can be extended to more general neural networks by employing the
same principle. Our problem can be described as follows: Let three input layer neurons be < x1, x2,
x3 >. For each combination of < x1, x2, x3 >, we are given a target output value of t. We can also
determine a computed output value y for each combination of < x1, x2, x3 > as follows: y = 0 if s =
w1x1 + w 2 x 2 + w 3 x 3 < 0.5; y = 1 otherwise. The problem is to determine < w1, w 2, w 3 > to maxi-
mize the number of matches between t and y for all given combinations of < x1, x2, x3 >. So-called
guided random search techniques, such as neural networks and genetic algorithms, have been
applied to solve this type of machine learning problem [9, 12]. Our amoeba-based system can
represent and determine solutions of the problem. The basic idea is to represent < w1, w 2, w 3 > as
an amoeba configuration, and search for a solution through the optical control interface under the
guidance of the knowledge discovery unit.

D. Knowledge Discovery by Means of Autonomous Meta-Problem Solving

This is a totally new concept of a humanoid-like problem solving technique. It can be illustrated
by the TSP discussed earlier. Ordinary TSP solving is applied to a fixed problem, i.e., the number
of cities and the distances among the cities never change. Our amoeba-based system can not only
solve the ordinary TSP but can also modify the original problem and solve the new ones [5]. In the
new problem, the number of cities and the distances may be changed. What is the significance of
such technique? In TSP, we can think of an early planning stage where no highways or airplane
routes are established. We set up a tentative initial layout and determine an optimal solution. Our
system extends this initial layout, bringing forth new problems (maps) and solutions, as well.
Adding new cities is similar to the Steiner-tree graph problem. We can select the best layout with
the associated best solution.

The most important point here is not a specific application to the TSP described above. Rather,
the primary concept is that, given a problem (e.g., a TSP), creating new problems (e.g., new TSPs)
and solving them. That is, we are solving a higher-level problem above the original lower-level
problem; this is why we use the term “meta-problem solving.” Further, this is done automatically
by amoeba without human intervention; this is why the term “autonomous.”

It is conceivable that this technique can be applied to many domains. For attribute or parameter
based systems, our system can suggest adding or deleting some attributes or parameters leading to
new problems. As another example, we can consider designing a walking robot. The objective is
to design a robot having good performance in terms of control stability, speed and cost. Our origi-

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER460

nal robot may have two legs, following our common way of thinking about humans. Our system
may suggest a three or four leg robot that would give better overall performance than the original
design.

5 Conclusions

A biological organism, such as the amoeba, is a hierarchically structured system in which a num-
ber of self-organization processes run simultaneously on their characteristic spatiotemporal scales
at multiple levels. The multiple levels are: the molecules, genes, proteins, cells, tissues, organs,
and body parts, as well as the whole body. Because the self-organization process at each level
involves a certain kind of benefit optimization, such as energy minimization and stability maximi-
zation, it would be reasonable to consider the organism as a particular kind of concurrent comput-
ing system in which a number of computing processes to solve different benefit optimization prob-
lems are executed concurrently by sharing common computational resources such as energies and
structured substances. If the multilevel optimization processes are capable of making a self-
disciplined decision, for example, a decision to accept a loss in short-term benefits of body parts
for the sake of long-term gains of the organism’s whole body, the decision capability may be ex-
ploited for performing some un-programmed but reasonable operations when incorporated in a
bio-computer.

Recently, inspired from the amoeba’s photoavoidance response, a powerful parallel search al-
gorithm was developed [14, 15]. The algorithm, called the "Tug-Of-War (TOW) model", is ap-
plied to the Multi-armed Bandit Problem (MBP), a problem of finding the most rewarding one
from a number of slot machines. To maximize profit, a player drops coins into a bank of machines,
evaluating as quickly and correctly as possible which machine wins jackpots with the highest
probability. The player, therefore, should make this decision in a trade-off created with incompati-
ble demands: one either exploits the rewards obtained using already collected knowledge or ex-
plores new alternatives for acquiring higher payoffs involving risks. The MBP represents the so-
called “exploration-exploitation dilemma” that many algorithms for tree search face in practical
situations. Thus, efficient algorithms for the MBP are useful for a wide range of applications re-
quiring powerful tree search capability.

Among well-known strong algorithms for the MBP, the TOW model exhibited the best per-
formance as the amoeba-like branches perform nonlocally-correlated parallel searches. By extract-
ing the essential dynamics of the amoeba’s spatiotemporal oscillatory behavior [16-18], the pow-
erful computing scheme may be implemented by other faster, man-made materials in a massively
parallel manner. Placing all the unique features together, the proposed amoeba-based system may
open up completely new methods of knowledge discovery and data mining.

Amoeba-Based Knowledge Discovery

GLOBAL INFORMATION PUBLISHER 461

References

1. T. Munakata, Ed.: Special Section “Knowledge Discovery,” Commun. ACM 42 (1999) (11) 26-67.
2. T. Munakata, Ed.: Special Issue “Beyond Silicon: New Computing Paradigms,” Commun. ACM 50 (2007)

(9) 30-72.
3. T. Nakagaki, H. Yamada, A. Toth: Maze-solving by an Amoeboid Organism, Nature 407 (2000), pp. 470.
4. M. Aono, Y. P. Gunji: Beyond Input-output Computings: Error-driven Emergence with Parallel Non-dis-

tributed Slime Mold Computer, BioSystems 71 (2003) 257-287.
5. M. Aono, M. Hara: Spontaneous Deadlock Breaking on Amoeba-based Neurocomputer, BioSystems 91

(2008) 83-93.
6. M. Aono, M. Hara, K. Aihara: Amoeba-based Neurocomputing with Chaotic Dynamics, Commun. ACM

50 (2007) (9) 69-72.
7. M. Aono, M. Hara, K. Aihara, T. Munakata: Amoeba-based Emergent Computing: Combinatorial Opti-

mization and Autonomous Meta-problem Solving, International Journal of Unconventional Computing 6
(2010) (2) 89-108.

8. M. Aono, Y. Hirata, M. Hara, K. Aihara: Amoeba-based Chaotic Neurocomputing: Combinatorial Opti-
mization by Coupled Biological Oscillators, New Generation Computing 27 (2009) 129-157.

9. T. Munakata: Fundamentals of the New Artificial Intelligence: Neural, Evolutionary, Fuzzy and More,
2nd ed., London: Springer. (2008)

10. M. A. Arbib, Ed.: The Handbook of Brain Theory and Neural Networks, 2nd ed., Cambridge, Massachu-
setts: The MIT Press. (2003)

11. J. J. Hopfield, D. W. Tank: Computing with Neural Circuits: A Model, Science 233 (1986) 625-633.
12. K. Aihara, T. Takabe, M. Toyoda: Chaotic Neural Networks, Phys. Lett. A 144 (1990) 333-340.
13. M. Hasegawa, T. Ikeguchi, K. Aihara: Combination of Chaotic Neurodynamics with the 2-opt Algorithm

to Solve Traveling Salesman Problems, Phys. Rev. Lett. 79 (1997) 2344-2347.
14. S.-J. Kim, M. Aono, M. Hara: Tug-of-war Model for the Two-bandit Problem: Nonlocally-correlated Paral-

lel Exploration Via Resource Conservation, BioSystems 101 (2010) 29-36.
15. S.-J. Kim, M. Aono, M. Hara: Tug-of-war Model for Multi-armed Bandit Problem, Unconventional Compu-

tation 2010, Lecture Notes in Computer Science, vol. 6079, Springer, 2010, pp.69-80..
16. M. Aono, Y. Hirata, M. Hara, K. Aihara: Resource-competing Oscillator Network as a Model of Amoeba-

based Neurocomputer, Unconventional Computation 2009, Lecture Notes in Computer Science, vol. 5715,
Springer, 2009, pp.56-69.

17. M. Aono, Y. Hirata, M. Hara, K. Aihara: A Model of Amoeba-based Neurocomputer, Journal of Com-
puter Chemistry, Japan vol. 9 (3), 2010, pp.143-156.

18. Y. Hirata, M. Aono, M. Hara, K. Aihara: Spontaneous Mode Switching in Coupled Oscillators Compet-
ing for Constant Amounts of Resources, Chaos 20 (2010), pp.013117.

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER462

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

