Analysing the PGM Protocol with UppAAL *

Béatrice Bérard Patricia Bouyer! Antoine Petit

LSV — UMR 8643 CNRS & ENS de Cachan,
61 av. du Prés. Wilson, F-94235 Cachan Cedex, France
{berard,bouyer,petit}@1lsv.ens-cachan.fr

Abstract

Pragmatic General Multicast (PGM) is a reliable multicast protocol, designed to minimize
both the probability of negative acknowledgements (NAK) implosion and the load of the
network due to retransmissions of lost packets. This protocol was presented to the Internet
Engineering Task Force as an open reference specification.

In this paper, we focus on the main reliability property which PGM intends to guarantee:
a receiver either receives all data packets from transmissions and repairs or is able to detect
unrecoverable data packet loss.

We first propose a modelization of (a simplified version of) PGM wia a network of timed
automata. Using UPPAAL model-checker, we then study the validity of the reliability property
above, which turns out not to be always verified but to depend on the values of several
parameters that we underscore.

1 Introduction

Since the introduction of timed automata (Alur and Dill (1990)), a lot of work has been de-
voted to both theoretical studies of timed models and practical issues for their analysis. Ver-
ification algorithms have been designed and implemented in so-called real-time model-checkers
like HYyTECH (Henzinger et al. (1997)), KrRoNOs (Bozga et al. (1998)) or UppaAL (Larsen et al.
(1997)), with successful results for numerous case studies. In this paper, we propose the verification
of two reliability properties for the multicast protocol PGM.

Reliable multicast protocols. Reliable multicast protocols are designed to enable distribution
of information from multiple sources to multiple receivers, with reliability requirements. Exam-
ples of applications which may benefit from this technology include video broadcasts, data base
replication or software downloads. Reliability in unicast protocols (like TCP) is usually achieved
by positive acknowledgments (ACK) sent by the receiver to the source. Extending this principle
to multicast protocols with a growing number of receivers may result in so-called ACK implosion.
For this reason, the development of multicast protocols initially focused on eliminating ACKs,
while keeping negative acknowledgements (NAK), invoked by receivers only when some packets
are not received. However, multiple redundant NAKs can also be issued if packets are lost during
periods of congestion. Besides, NAKs can be followed by redundant retransmissions.

PGM protocol. Pragmatic General Multicast (PGM) belongs to a second generation of reliable
multicast protocols, designed to address the problems mentioned above: it is said to minimize
both the probability of NAK implosion and the load of the network due to retransmissions of lost
packets. The approach taken for buffer management resorts to timeouts at the source, with a
new packet type called Source Path Message (SPM). This protocol was developed jointly by Cisco
systems and TIBCO, and presented to the Internet Engineering Task Force as an open reference
specification (Speakman et al. (2001)). It is currently supported as a technology preview, usually
over [P, with which users may experiment, and it enters the longer-term standardization process.

*This work has been supported by the french project RNRT Calife.
TThis work has been partly carried out while this author had a post-doctoral fellowship at BRICS, Aalborg
University, Denmark



Contribution of the paper. In this paper, we focus on the main reliability property which
PGM intends to guarantee (Speakman et al. (2001)): a receiver either receives all data packets from
transmissions and repairs or is able to detect unrecoverable data packet loss. Section 2 presents
the main features of PGM. In Sections 3 and 4, we describe how a simplified model of the protocol
is built, via a network of timed automata. Section 5 is devoted to a detailed presentation of the
verification process and Section 6 concludes the paper.

2 Description of PGM

We first give a brief description of the protocol, with a single source, as proposed in (Speakman
et al. (2001)). Since we are only interested in reliability, we omit all mechanisms related to
minimization of the load.

The source multicasts sequenced data packets called ODATA (for Original Data), within a transmit
window, at a given rate. Those packets are transmitted through network elements, along some
path of a distribution tree. If a receiver detects a missing packet from the expected sequence, it
repeatedly unicasts a negative acknowledgement (NAK) to the last element on the path. This
network element forwards the NAK to the source using the reverse path, and multicasts a NAK
confirmation (NCF). The receiver stops sending the NAK upon reception of the NCF. The same
operation is repeated in turn at each level of the path toward the source, including the source itself.
Repairs (RDATA) must then be provided by the source or by a Designated Local Repairer (DLR).
Since the reliability of the protocol mainly depends on the NAK transmissions, PGM defines a
network-layer hop-by-hop procedure for reliable forwarding. A similar method is used for NCF
multicasting.

In addition to this basic data transfer operation, SPMs (Source Path Messages) are sent by the
source at a given rate, thus periodically interleaved with ODATA. Their purpose is twofold:

1. maintaining up-to-date neighbour information, to ensure that the return path for the NAKs
is exactly the reverse of the forward path followed by ODATA and

2. delivering information on transmit resources to the receivers.

The architecture of a network on which PGM can be used is depicted on figure 1.

Source

@ Network element

Receiver

Figure 1: An overview of PGM

Transmit window. More precisely, assuming a constant data packet size, ODATA packets are
ordered by the source in unit increments from a circular sequence number space from 0 to 232 —1,
and buffer management relies on the transmit window maintained by the source:

e the left edge of this window, txw_trail, is the number of the oldest data packet available
for repair,

e its right edge, txw_lead, is the number of the most recent data packet transmitted.



The window is considered empty if txw_trail = txw_lead -+ 1 and its size is bounded by 2'6 —1.
There is no fixed strategy for the source to advance the trailing edge of the window. The edges
of the transmit window are contained in SPMs. A receiver also maintains a receive window, with
edges rxw_trail and rxw_lead, which evolves according to the informations received from the
source, either by data packets or SPMs.

Rates and priorities. The source must strictly prioritize sending of pending NCFs first, pending
SPMs second, and only send ODATA or RDATA when no NCFs or SPMs are pending. The priority
of RDATA versus ODATA is application dependent, with a possible sharing strategy. Before the
source multicasts some RDATA upon reception of a NAK, there may be some bounded delay to
wait for other NAKs.

There are two types of SPMs: in the presence of O/RDATA, ambient SPMs are transmitted by
the source at a regular rate, while heartbeat SPMs are transmitted in the absence of data at a
decaying rate, in order to maintain receive windows and assist early detection of lost data.

3 Modelling PGM with timed automata

In this section, we explain how our model of the protocol is built. Since the protocol involves
timing constraints, the choice of a timed model-checker is mandatory. Besides, many discrete
variables appear, with an array-like organization. This leads to the tool UPPAAL (Bengtsson
et al. (1998)), which offers a compact description language for this type of variables, thus making
modelling easier.

3.1 Modelling with UPPAAL

A complete presentation of the model handled by UPPAAL can be found in many papers or surveys
(see for example (Larsen et al. (1997); Bengtsson et al. (1998); Amnell et al. (2001); Bérard et al.
(2001))). Timed automata in UPPAAL are a modified version of the original ones from (Alur and
Dill (1994)). We briefly recall here in an informal way the main characteristics of the model,
illustrated in Section 4 below (see Remark 4.1).

In UPPAAL, a system consists of a collection of timed automata, with binary synchronization: two
components synchronize through channels with a sender /receiver syntax. For instance, on a given
channel c, a sender emits a signal denoted by c! and a receiver synchronizes with the sender by
the corresponding reception denoted by c?. These two actions are called complementary actions.
A timed automaton is a finite structure handling a finite set of variables. These variables are either
clocks, which evolve synchronously with time, or bounded discrete integer variables. A location
in an automaton can be labelled by clock conditions, called invariants, which must be satisfied as
long as time elapses in this location. A transition of the automaton is decorated by three types of
labels:

e a guard expressing a condition on the values of the variables, which must be satisfied for the
transition to be fired,

e a synchronization label of the form c! or c?,
e a clock reset and an update of integer variables.

Note that each type of label is optional, an absence of synchronization meaning that the automaton
performs an internal action.

A (global) configuration is of the form (¢,v) where £ is a location vector (indicating the current
state in each component of the timed automata network) and v is a valuation of the variables,
that is a function which assigns to each clock a real value and to each discrete variable an integer
value. An execution in the network starts in initial locations of the different components with all
the clocks and variables set to zero. The semantics of this model is expressed by moves between
the configurations. Three types of moves can occur in the system: delay moves, internal moves
and synchronized moves.



