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1. Introduction

We consider the following linear system
Ax = b, (1)

where A is a complex n x n matrix, x and b are n-dimensional vectors. For any splitting, A = M — N with the nonsingular
matrix M, the basic iterative method for solving the linear system (1) is as follows:

XT1'=MT'NX¥+M b i=0,1,2,....

Some techniques of preconditioning which improve the rate of convergence of these iterative methods have been developed.
Let us consider a preconditioned system of (1)

PAx = Pb, (2)
where P is a nonsingular matrix. The corresponding basic iterative method is given in general by

Xt =M, 'NeX' + M;'Pb i=0,1,2,...,
where PA = Mp — Np is a splitting of PA.
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In 1997, Kohno et al. [1] proposed a general method for improving the preconditioned Gauss-Seidel method with the
preconditioned matrix P = I + S, if A is a nonsingular diagonally dominant Z-matrix with some conditions, where

0 —o1012 0 s 0
0 0 —0p0y3 - 0
Su = | : : : :
0 0 0 S 1 | ¢ R )
0 0 0 ‘e 0

They showed numerically that the preconditioned Gauss-Seidel method is superior to the original iterative method if the
parameterso; > 0 (i= 1,2, ...,n — 1) are chosen appropriately.

Many other researchers have considered left preconditioners applied to linear system (1) that made the associated Jacobi
and Gauss-Seidel methods converge faster than the original ones. Such modifications or improvements based on prechosen
preconditioners were considered by Milaszewicz [2] who based his ideas on previous ones (see, e.g., [3]), by Gunawardena
et al. [4], and very recently by Li and Sun [5] who extended the class of matrices considered in [1] and by other researchers
(see, e.g., [6-12]), and many results for more general preconditioned iterative methods were obtained.

In this paper, besides the above preconditioned method, we will consider the following preconditioned linear system

Agx = bg, (3)
where Ag = (I + Kg)A and bg = (I + Kg)b with
0 0 e 0 0
—Brazq 0 e 0 0
Ky = 0 —Baazy - 0 0.
0 0 - —Builun O
where 8; > 0(i =1, 2, ..., n—1). Our work gives the convergence analysis of the above two preconditioned Gauss-Seidel

methods for the case when a coefficient matrix A is an H-matrix and obtains two sufficient conditions for guaranteeing the
convergence of two preconditioned iterative methods.

2. Preliminaries

Without loss of generality, let the matrix A of the linear system (1) be A = I — L — U, where [ is an identity matrix, L and
U are strictly lower and upper triangular matrices obtained from A, respectively.
We assume a; ;11 # 0, considering the preconditioner P = I + S,, then we have

Ag=(U+S)A=1—L—S,L — (U — S, + S,U)

b, = (I + Sa)b,
whenever
il j+10i41,i ;é 1 fori= 1,2,...,n—1,

then (I — L — S,L)~! exists. Hence it is possible to define the Gauss-Seidel iteration matrix for A,, namely

Ty = (=L —S,)7'(U = Sy + SoU). (4)
Similarly, if a; ;_1 # 0, considering the preconditioner P = I 4 Kj, then we have

Ag=(U+KgpA=1—L+Kg—KgL — (U~+KgU)

bg = (I 4+ Kg)b,
and define the Gauss-Seidel iteration matrix for Ag, namely

Tg = (I — L+ Kz — KgL) "' (U + KgU). (5)

We first recall the following: A real vector x = (X1, X3, ..., X,)" is called nonnegative(positive) and denoted by x >
0(x > 0),ifx; > 0 (x; > 0) for all i. Similarly, a real matrix A = (a;;) is called nonnegative and denoted by A > 0 (A > 0) if
a;j > 0(a;; > 0) for all i, j, the absolute value of A is denoted by |A| = (|a; ;).

Definition 2.1 ([13]). A real matrix A is called an M-matrix if A = sl — B,B > 0and s > p(B), where p(B) denotes the
spectral radius of B.
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Definition 2.2 ([13]). Acomplex matrixA = (a; ;) is an H-matrix, if its comparison matrix (A) = (@; ;) is an M-matrix, where
(_quj is

aii = |ail, aij = —lajl, 1#j.
Definition 2.3 ([14]). The splitting A = M — N is called an H-splitting if (M) — |N| is an M-matrix.

Lemma 2.1 ([14]). Let A = M — N be a splitting. If it is an H-splitting, then A and M are H-matrices and p(M~'N) <
p((M)'IN]) < 1.

Lemma 2.2 ([15]). Let A have nonpositive off-diagonal entries. Then a real matrix A is an M-matrix if and only if there exists some
positive vector u = (uy, ..., u,)" > 0 such that Au > 0.

3. Convergence results

Theorem 3.1. Let A be an H-matrix with unit diagonal elements, A, = (I 4+ S4)A = My — Ny, My, = I — L — S,L and
Ny = U—=S,+S,U.Letu = (uq, ..., u,)" bea positive vector such that (A)u > 0. Assume that Gijit1 #0fori=1,2,...,n-1,
and

i—1 n
w— ) laijluy — 30 laijlu 4 1 Ui
, =1 j=it2

n
aiival D @iy jlu;
=

thena] > 1fori=1,2,...,n— 1andfor 0 < o; < o, the splitting A, = M, — N, is an H-splitting and p(Ma‘]ND,) < 1so
that the iteration (2) converges to the solution of (1).

Proof. By assumption, let a positive vector u > 0 satisfy (A)u > 0, from the definition of (A), we have
n
ui—Z|a,-_j|uj >0 fori=1,2,...,n—1.
o
Therefore, we have

i—1 n n
wi— Y laijly = D lajly + il — gl Y laily
=

j=it2 j=1
n n
:ui—Z|ai,j|uj+|a,~,,A+1| Uiy — Z |Gi1 1Y fori=1,2,...,n—1.
j=1 j=1

i#i i

Observe that u; — > j—y |aijlu; > 0and ujyq — Y "'j=1 |@i1j|u; > O, then we have
i i

i—1 n n
wi— Y laijly = > laijly + @il — gl Y gl > 0,
=

j=i+2 j=1
and
i—1 n n
u — Z |a,-,]-|uj — Z |a1-,]-|uj =+ |ai,i+1 |ll,'+1 > |al-,i+1| Z |Cl1‘+1’j|u]' >0 fori= ], 2, cee, I — 1.
j=1 j=i+2 j=1

This implies

i—1 n
U — > lagilyy — - laijluy 4 1a;,i41 [Uigq
i=1 j=it2 .
o = ! Jln >1 fori=1,2,...,n—1.
@1l D laip iy

=1

Hence,af > 1fori=1,2,...,n—1. O
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In order to prove that p(M(;]N(,) < 1, we first show that (M,) — |N,| is an M-matrix. Let [((My) — |N,|)u]; be the ith

element in the vector ((M,) — |[N,ufori=1,2,...,n — 1.Then we have

i—1 n
[({Mg) — [N Duli = |1 — @ i11a341,i |0 — Z |aij — o iy 101 jlU; — Z |aij — o i+10i1,j]U;
= j=it1
i—1 i—1
> U — | i1 QiU — Z laijluj — o Z | 41T 1
j=1 j=1

n n
= > el — e Y laiiaign gl — 11— ol lgg g Ui,

j=it2 j=it2
and
n
[((Ma) = INa)uly = up — > lay jlu; > 0.
j=1
j#n
IfO<a <1fori=1,2,...,n—1,then we have
i~1 i~1
[(Ma) = INaDuli > ui — el ipa@i il — Y laijlu — o Y aiieaign |y
j=1 j=1
n n
= laijlyy— o Y laiieaign iy — (1= @)lailui
j=ir2 j=it2

n n
= U — Z la; j|u; + il ipq Ui — @@ 4] Z @iy iU

j=1 j=1
#i i+
n n
= | ui— Y laijlyy | +ailaiil [ uigr — D laigly
=1 =1
#i i+

Since u; — Y -1 |aijluy; > 0and ujq — Y. "j=1 |aiy14]u; > 0, we have
J# J#i+1

[((My) — INoDul; > 0 fori=1,2,...,n— 1.
If1 <o <eo/fori=1,2,...,n— 1, from(6)and the definition of &, then we have

i-1 i-1
[((Ma) = INaDuli > w5 — 0tilas41Gisrilts — Y laijluy — o Y 1181,
j=1 j=1
n n
— ) laiglyy — o Y laiiaign i — (o — Dlaiilui
= =2
i—1 n n
=ui— Y lajluy— Y laijlu + |6 luio — ailaiial Y laijly;
= =2 =

> 0.
Therefore, from (7) to (10), we have
({Mg) — INgDu >0 for0 <o < of.

(10)

By Lemma 2.2, (M) — |N,| is an M-matrix for0 < o; < o} (i = 1,2, ..., n — 1). From Definition 2.3, A, = M, — N, is an
H-splitting for 0 < o; < f (i =1, 2,...,n — 1). Hence, according to Lemma 2.1, we have that A, and M, are H-matrices

and p(M;'Ny) < p({Mg) 71Ny ) < 1for0 <oy <o (i=1,2,...,n—1).

Theorem 3.2. Let A be an H-matrix with unit diagonal elements, Ag = (I + Kg)A = Mg — Ng, Mg =1 — L + Kg — KgL and
Ng =U +KgU. Let v = (v, ..., v,)T be a positive vector such that (A)yv > 0. Assume that a;;_y # 0 fori=2,...,n, and

i—2 n
vi — Y laijlv — Yo laijlvp + laii-1|vieg
= j=it1

B = ;

n
laii—1] Y lai—1jlvj
=1
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then B} > 1fori=2,...,nandfor 0 < B; < B, the splitting Ag = Mg — Ng is an H-splitting and p(Mﬁ_1N5) < 15so that the

iteration (2) converges to the solution of (1).

Proof. From the conditions of the theorem, we know there exists a positive vector v > 0 satisfying (A)u > 0, then we have

n
Vi — Z|ai‘j|vj >0 fori=2,...,n.
j=1
J#
Therefore, we have

i—2 n n
vi — Z lai v — Z |aijlvj + 1aii-1|vier — |aii1] Z |ai—1,lv;
j=1 Jj=1

j=it1

n n

=V — Z |ai,;|vj + |(1,',,',1| Vi—1 — Z Iai,1,j|vj fori = 2, N (N
j=1 j=1
J# J#i—1

Since v; — > iy |aijlv; > 0and vi_y — Y_"j=1 |ai_1]v; > O, we have
i#i J#i-1

v,

i—-2 n n
=Y laijlvy = Y laijlvy + laicalvies = laiial Y i jlv; > 0.
j=1 Jj=1

j=it1

So it is obvious to obtain

i—2 n n
v — Z |la; jlv; — Z lai jlvj + 1aii—1|viet > 1aii—1] Z lai—qjlv; >0 fori=2,...,n.
=

j=it1 j=1

This implies

i—2 n
vi — > laijlyy— D laijlvy + laii—1]viey
i =it 1 .
,Blf: J = >1 fori=2,...,n.

n
laii—1| Y lai—qjlvj
=1

Namely, 8/ > 1fori=2,...,n. O

In order to prove that ,o(Mﬁ_lN,g) < 1, we first show that (Mg) — |Ng| is an M-matrix, let [({(Mg) — |[Ng|)v]; be the ith

element in the vector ((Mg) — |[Ng|)v fori =2, ..., n. Then we have

i—1 n
[((Mg) — INgDV]i = v; — Bi—1laii—1ai—1,ilvi — Z laij — Bi—1aii—10Gi—1,j|vj — Z laij — Bi—1aii—1ai—1,j|v;
=

j=it1

%

i—2 i—2
vi — Bic1l@ii—10i-1,ilvi — Z laijlv; — Bi-1 Z @i i—1ai—1,j]v;
=

=1

n n
— Y laijly = Bicr Y laiiagialy — 1= Bioallaiioalviot,

Jj=i+1 Jj=it1

and
n
[((Mg) — INgDVls = v1 = ) laylv; > 0.
=
IfO < Bi_1 < 1fori=2,...,n, then we have

i—2 i-2
[((Mg) — INgD)VLi = vi = Bialaiiagiovilvi— Y laijlvy — Bior D laii1aio1ly;

j=1 j=1

n n
— > laigly = Bicr Y laiiaaioajly — (1= Biplaiii|vis

Jj=i+1 Jj=i+1

(11)

(12)



2053

n

n
=V — Z laijlv; + Bi—1laii-1]vi1 — Bi—1lai i1l Z |ai—1,j]vj
j=1

Jj=1 Jj=
i J#i-1
n n
=|vi— Z laijlv; | + Bi—1laii—al | vie1 — Z lai—1jlvj | - (13)
=1 =1
i i1

Observe that v; — Y |a;;lv; > 0and viqy — Y_"j=1 |ai_1j]v; > 0, then we have
i J#i—1

[((Mg) — INg])v]; > 0 fori=2,3,....n. (14)
If1 < Biy < B/_;fori=2,...,n, from(11)and the definition of 8;_,, then we have
i—2 i—2
[((Mg) — INgD)VL: = vi — Bioalaiiaaiorilvi— Y laijlv; — Bic Y |aiio1aio1 v,
= =
n n
- Z laijlv; — Bi-1 Z @i i—1Gi—1,jlv; — (Bi=1 — DIa;i—1]vieq
j=i+1 Jj=i+1
i—2 n n
=vi— Y laijlyy— Y laijlv + laii-alvics — Bioalaiioal Y lai—lv;
=1 j=it1 =1
> 0. (15)

Therefore, from (12) to (15), we have
({Mg) — INgDv >0 for0 < Bi_1 < B_;.

By Lemma 2.2, (Mg) — |Ng| is an M- matrix for 0 < gy < B{_, (i = 2, ..., n). From Definition 2.3, Ay = Mg — Ny is
an H-splitting for 0 < Bi_; < B{_; (i = 2,..., n). Hence, from Lemma 2.1, we have that Ag and Mg are H-matrices and

p(Mg'Ng) < p((Mp)'INgl) < 1for0 < By < B, (i=2,...,n).

Remark 3.1. From Theorems 3.1 and 3.2, we observe that the two preconditioned iterative methods converge to the solution
of the linear system (1) if the coefficient matrix A which is an H-matrix satisfies the conditions of the corresponding
theorems. Hence the two theorems provide sufficient conditions for guaranteeing the convergence of the preconditioned
iterative methods.
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