
278

intermediate

map

(Key2 ,
values...)

map

(key4 ,
values...)

Barrier: group values by output key

reduce reduce reduce

key 1,
intermediate

values

key 2,
intermediate

values

key 3,

values

final key 1
values

final key 2
values

final key 3
values

map

(key3 ,
values...)

Input

map

(Key1 ,
values...)

Input Input Input

Figure1. Processing procedure of MapReduce

Design and Implement of Distributed Document
Clustering Based on MapReduce

Jian Wan, Wenming Yu1, and Xianghua Xu
Grid and Services Computing Lab

School of Computer Science and Technology
Hangzhou Dianzi University, Hangzhou 310037, China

1yuwenming_001@163.com

Abstract—In this paper, we describe how document
clustering for large collection can be efficiently
implemented with MapReduce. Hadoop implementation
provides a convenient and flexible framework for
distributed computing on a cluster of commodity machines.
The design and implementation of tfidf and K-Means
algorithm on MapReduce is presented. More importantly,
we improved the efficiency and effectiveness of the
algorithm. Finally, we give the results and some related
discussion.

Index terms—MapReduce, tfidf, K-Means clustering

I. INTRODUCTION
With the rapid development of the Internet, huge

volumes of documents need to be processed in a short
time. Research on web mining focuses on scalable
method applicable to mass documents[1]. Storage and
computing of mass documents data in a distributed
system is an alternative method[2]. In distributed
computing, a problem is divided into many tasks, each of
which is solved by one computer. However, many
problems such as task scheduling, fault tolerance and
inter-machine communication are very tricky for
programmers with little experience with parallel and
distributed system.

In this paper we describe our experiences and findings
of document clustering based on MapReduce.
MapReduce [3] is a framework which programmers only
need to specify Map and Reduce functions to make a
huge task parallelize and execute on a large cluster of
commodity machines. In the document pre-processing
stage, we design a new iterative algorithm to calculate
tfidf weight on MapReduce in order to evaluate how
important a term is to a document in a corpus. Then, a K-
Means clustering is implemented on MapReduce to
partition all documents into k clusters in which each
documents belongs to the cluster with the same meaning.
More importantly, we find that ignoring the terms with
the highest document frequencies can not only speed up
our algorithm on MapReduce, but also improve the
precision of document clustering slightly. Experiments
show that our method in approximately linear growth in
required running time with increasing corpus size for
corpus containing several ten thousand documents.

II. MAPREDUCE AND HADOOP
Many real world tasks have the same characteristics:

a computation is applied over a large number of records

to generate partial results, which are then aggregated in
some fashion. MapReduce is a programming model
which is specializing in handing problems having
“Divide and Conquer” structure. MapReduce inspired by
functional language consists of the Map and Reduce
abstract concepts. A map function process each logical
“record” in our input in order to compute a set of
intermediate key/value pairs, and then a Reduce function
accepts an intermediate key and a set of values for that
key in order to combine the derived data appropriately.
Figure 1 illustrates the two processing stages.

Apache Hadoop [4] is a Java software framework that
consists of a MapReduce model and a distributed file
system (HDFS, similar to GFS[5]). HDFS is designed to
scale to mass storage across multiple machines, and
transparently provides read/write, backup and fault-
tolerance for users. Hadoop is becoming increasingly
popular[6, 7] because it hides the messy details of
parallelization, fault-tolerance, data distribution and load
balancing.

III. CALCULATE TFIDF ON MAPREDUCE
The tfidf weight [8](term frequency–inverse

document frequency) is a weight often used in text
mining and information retrieval. The importance of a
term increases proportionally to the number of times a
term appears in the document but is offset by the
frequency of the term in the corpus. Therefore the weight
of feature term it in the corpus can be calculated using
the classic tfidf scheme in formula (1).

/ log(/)ij ij i i j iw tf idf t d N n= × = × (1)

ISBN 978-952-5726-07-7 (Print), 978-952-5726-08-4 (CD-ROM)
Proceedings of the Second Symposium International Computer Science and Computational Technology(ISCSCT ’09)

Huangshan, P. R. China, 26-28,Dec. 2009, pp. 278-280

© 2009 ACADEMY PUBLISHER
AP-PROC-CS-09CN005

279

ijf is the frequency of feature term it in the

document jd . It can be designated /i jt d , where it is

the number of occurrences of the term it in document jd ,

and jd is the total number of terms in document jd . N

is the total number of documents in the corpus, and in is
the number of documents that contains term it . We can
see from the formula (1) that we should calculate it ,

jd and in on MapReduce to get tfidf.
1) Number of times a term it appears in a given

document: The format of input data to Map function is
(Docname, content), which means that document name is
key and relevant content is value. For each term in the
document, Map function output ((term, Docname), 1)
which means this term occurrences one time in this
document. Reduce functions accepts the output of former
Map functions, and aggregate the records with the same
key. The output format of Reduce functions is ((term,
Docname), it). In practice, we can add a Combiner
function to accelerate the computing speed. The function
of Combiner function is the same as the Reduce function.

2) Number of terms in each document: This step’s
input data is the output of the first step, and the map
functions convert the format into (Docname, (term, it)).
The Reduce functions get the records sharing the same
docname, and accumulate the number of different terms

it into jd in the same document. The output format of

this step is ((term, Docname), (it , jd))。
3) Number of documents term it appears in: The

Map function in this step turn the output of above step
into the format of (term, (Docname, it , jd , 1)), which
means that this term appears in one document. The
Reduce function accumulate “1” with the same term into

in , this is the number of documents contain the term
it 。 The output format of this step is ((term, Docname),

(it , jd , in)).
4) Calculate tfidf : The output of step 3 means

that it is the occurrence time of term it in document jd ,

jd is the number of all terms in document jd and in is

the number of documents contain the term it . We can
just use formula (1) to calculate tfidf of terms in different
documents. The output format of the result is

1 1(, (& , , &))n nDocname term tfidf term tfidf .

IV. K-MEANS CLUSTERING
K-Means clustering [9] choose k initial points and

mark each as a center point for one of the k sets. Then for
every item in the total data set it marks which of the k
sets it is closest to. It then finds the average center of
each set, by averaging the points which are closest to the

set. With the new set of centers (centroid), it repeats the
algorithm until convergence has been reached.

The implementation of document clustering on
MapReduce accepts two input directories: one is the
documents directory with the output of calculating tfidf,
and one is centers directory with k initial document
centers. The k initial document centers are chosen from
the records of documents directory. Note that the k-line
document data have the same terms as fewer as possible.

In every iteration, the MapReduce framework will
partition the input files of document directory into a set
of M splits, and then these splits are processed in parallel
by M Map functions. Map functions read in a document
with the
format 1 1(, (& , , &))n nDocname term tfidf term tfidf .
Map functions should determine which of the current set
of k document centers (in centers directory) the
document is closest to and emits a record containing all
the document’s data and its chosen k-center with the
format

1 1(, (, & , , &))n nk center Docname term tfidf term tfidf− .
The Reduce function receives a k-center and all
documents which are bound to this k-center. It should
calculate a new k-center, and put the new k-center in
centers directory. To evaluate the distance between any
two documents, we use the cosine similarity metric of
tfidf, and use arithmetic average to calculate the new k-
center. Note that the contents in document directory will
not change during the process. The whole K-Means
clustering on MapReduce can be expressed as the
following two step:

: (, & _)

(_ , (, & _)
map Docname term tfidf list
k center Docname term tfidf list

 →
 (2)

:(_ ,(, & _)

(_ _ , & _)
reduce k center Docname term tfidf list

new k center term tfidf list→
(3)

V. EXPERIMENT EVALUATIONS
In our experiment, we used Hadoop version 0.18.2

running on a cluster with 5 machines (one is the master,
also act as a slave). Each machine has two single-core
processors (running at 2.33GHz), 1GB memory, and
130GB disk, and the network bandwidth is 100Mbps.
The configuration of Hadoop is two map functions
running on a processor core simultaneously. The number
of map functions can be controlled precisely.

We used the Sogou documents classification corpus1,
containing 80k documents, totaling approximately
211MB. There are 10 different subjects in the corpus,
and 8k documents in each subject. These documents are
parsed and terms are stemmed. All empty words (we
maintain a Chinese stop word list) in these documents
are removed.

We always use running time to measure the
efficiency. One issue that became evident in initial
experiments was the prevalence of “stragglers”, which
means one or two reducers that take significantly longer

1 http://www.sogou.com/labs/dl/c.html

280

Figure2. Running time of tfidf algorithm with the different size of
collections

than the others (this is a common problem, see) due to
the Zipfian distribution of terms. In our experiment, we
eliminate the terms with the highest document

frequencies. We adopt a 95% cut at step 3 in section 3,
which means that the most frequent 5% of terms were
ignored. This method greatly increases the efficiency of
our algorithm on Hadoop. On the other hand, because the
terms we discarded are non-discriminative, the precision
of document clustering is improved slightly.

Figure 2 shows the running time of tfidf algorithm
on our cluster with increasing collection size for
collection containing 80k documents. We get the result
just to see the effect of our algorithm on Hadoop, don’t
configure our cluster in optimizing. We find the time
used for calculating the whole collection is more than
half an hour. However, the running time and space
required is approximately linear with the size of
collection, this is characteristics we expect in processing
mass data.

We measure the running time of K-Means
clustering on the clusters, and then implement
conventional K-Means on single machine as a
benchmark. These results were compared against an
equivalent run on the machine with the same times of
iterations (5 times). We can see from Figure 3 that the
running time of K-Means algorithm on a cluster with 5

machines relatively much less than on a single machine.
More importantly, with the size increasing of our
collections, the advantage of efficiency has become
increasingly evident.

VI. CONCLUSIONS
The paper has introduced a mass documents

clustering in a distributed system Hadoop. Experiments
show the scalability of our method in processing mass
data. The contributions of our work lie in both design
and implement tfidf and K-Means algorithm on
MapReduce. We believe that our work provides an
example of a programming paradigm that could be useful
for a broad range of text analysis problems. Finally, we
always pay attention to the alternative approaches to
similar problems based on MapReduce [10]. Hadoop
provides unprecedented opportunities for researchers to
handle real-world problems at scale.

ACKNOWLEDGMENT
This paper is supported by National Science

Foundation of China under grant No.60873023, and
Science and Technology R&D Program of Zhejiang
Province, China under grant No. 2008C13080,
No.2007C21G3230005.

REFERENCES
[1] Roberto, J.B., M. Yiming, and S. Ramakrishnan, Scaling up

all pairs similarity search, in Proceedings of the 16th
international conference on World Wide Web. 2007, ACM:
Banff, Alberta, Canada.

[2] Michael, J.F., Evolution of distributed computing theory:
from concurrency to networks and beyond, in Proceedings
of the twenty-seventh ACM symposium on Principles of
distributed computing. 2008, ACM: Toronto, Canada.

[3] Jeffrey, D. and G. Sanjay, MapReduce: simplified data
processing on large clusters. Commun. ACM, 2008. 51(1):
p. 107-113.

[4] Apache Lucene Hadoop[EB/OL].http://hadoop.apache.org/.
[5] Sanjay, G., G. Howard, and L. Shun-Tak, The Google file

system, in Proceedings of the nineteenth ACM symposium
on Operating systems principles. 2003, ACM: Bolton
Landing, NY, USA.

[6] Jimmy, L., Brute force and indexed approaches to pairwise
document similarity comparisons with MapReduce, in
Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information
retrieval. 2009, ACM: Boston, MA, USA.

[7] ZHENG Xin-jie, ZHU Cheng-rong, and X. Qi-bang, Design
and Implementation of Distributed Ray Tracing Using
MapReduce. Computer Engineering, 2007(22).

[8] Salton, G. and T.Y. Clement, On the construction of
effective vocabularies for information retrieval, in
Proceedings of the 1973 meeting on Programming
languages and information retrieval. 1973, ACM:
Gaithersburg, Maryland.

[9] Fasulo, D., An Analysis of Recent Work on Clustering
Algorithms, in Technical Report UW-CSE-01-03-02. 1999,
ACM: University of Washington.

[10] Chu, C.-T., S.K. Kim, and Y.-A. Lin, Mapreduce for
machine learning on multicore, in In Proceedings of Neural
Information Processing Systems Conference (NIPS) 2007.

Figure 3. Running time comparison of K-Means on different size
of collections

