
DISTRIBUTED SYSTEMS
PRINCIPLES AND PARADIGMS

PROBLEM SOLUTIONS
ANDREW S. TANENBAUM

MAARTEN VAN STEEN

SOLUTIONS TO CHAPTER 1 PROBLEMS

1. Q: An alternative definition for a distributed system is that of a collection of
independent computers providing the view of being a single system, that is, it
is completely hidden from users that there even multiple computers. Give an
example where this view would come in very handy.
A: What immediately comes to mind is parallel computing. If one could
design programs that run without any serious modifications on distributed sys-
tems that appear to be the same as nondistributed systems, life would be so
much easier. Achieving a single-system view is by now considered virtually
impossible when performance is in play.

2. Q: What is the role of middleware in a distributed system?
A: To enhance the distribution transparency that is missing in network operat-
ing systems. In other words, middleware aims at improving the single-system
view that a distributed system should have.

3. Q: Many networked systems are organized in terms of a back office and a
front office. How does organizations match with the coherent view we demand
for a distributed system?
A: A mistake easily made is to assume that a distributed system as operating
in an organization, should be spread across the entire organization. In practice,
we see distributed systems being installed along the way that an organization
is split up. In this sense, we could have a distributed system supporting back-
office procedures and processes, as well as a separate front-office system. Of
course, the two may be coupled, but there is no reason for letting this coupling
be fully transparent.

4. Q: Explain what is meant by (distribution) transparency, and give examples of
different types of transparency.
A: Distribution transparency is the phenomenon by which distribution aspects
in a system are hidden from users and applications. Examples include access
transparency, location transparency, migration transparency, relocation trans-
parency, replication transparency, concurrency transparency, failure trans-
parency, and persistence transparency.

5. Q: Why is it sometimes so hard to hide the occurrence and recovery from fail-
ures in a distributed system?
A: It is generally impossible to detect whether a server is actually down, or
that it is simply slow in responding. Consequently, a system may have to
report that a service is not available, although, in fact, the server is just slow.

2 PROBLEM SOLUTIONS FOR CHAPTER 3

6. Q: Why is it not always a good idea to aim at implementing the highest degree
of transparency possible?
A: Aiming at the highest degree of transparency may lead to a considerable
loss of performance that users are not willing to accept.

7. Q: What is an open distributed system and what benefits does openness pro-
vide?
A: An open distributed system offers services according to clearly defined
rules. An open system is capable of easily interoperating with other open sys-
tems but also allows applications to be easily ported between different imple-
mentations of the same system.

8. Q: Describe precisely what is meant by a scalable system.
A: A system is scalable with respect to either its number of components, geo-
graphical size, or number and size of administrative domains, if it can grow in
one or more of these dimensions without an unacceptable loss of performance.

9. Q: Scalability can be achieved by applying different techniques. What are
these techniques?
A: Scaling can be achieved through distribution, replication, and caching.

10. Q: Explain what is meant by a virtual organization and give a hint on how
such organizations could be implemented.
A: A virtual organization (VO) defines a group of users/applications that have
access to a specified group of resources, which may be distributed across many
different computers, owned by many different organizations. In effect, a VO
defines who has access to what. This also suggests that the resources should
keep an account of foreign users along with their access rights. This can often
be done using standard access control mechanisms (like the rwx bits in UNIX),
although foreign users may need to have a special account. The latter compli-
cates matters considerably.

11. Q: When a transaction is aborted, we have said that the world is restored to its
previous state, as though the transaction had never happened. We lied. Give an
example where resetting the world is impossible.
A: Any situation in which physical I/O has occurred cannot be reset. For
example, if the process has printed some output, the ink cannot be removed
from the paper. Also, in a system that controls any kind of industrial process, it
is usually impossible to undo work that has been done.

12. Q: Executing nested transactions requires some form of coordination. Explain
what a coordinator should actually do.
A: A coordinator need simply ensure that if one of the nested transactions
aborts, that all other subtransactions abort as well. Likewise, it should

3 PROBLEM SOLUTIONS FOR CHAPTER 3
coordinate that all of them commit when each of them can. To this end, a
nested transaction should wait to commit until it is told to do so by the coordi-
nator.

13. Q: We argued that distribution transparancy may not be in place for pervasice
systems. This statement is not true for all types of transparencies. Give an
example.
A: Think of migration transparency. In mnay pervasive systems, components
are mobile and will need to re-establish connections when moving from one
access point to another. Preferably, such handovers should be completely
transparent to the user. Likewise, it can be argued that many other types of
transparencies should be supported as well. However, what should not be hid-
den is a user is possibly accessing resources that are directly coupled to the
user's current environment.

14. Q: We already gave some examples of distributed pervasive systems: home
systems, electronic health-care systems, and sensor networks. Extend this list
with more examples.
A: There are quite a few other examples of pervasive systems. Think of large-
scale wireless mesh networks in cities or neighborhoods that provide services
such as Internet access, but also form the basis for other services like a news
system. There are systems for habitat monitoring (as in wildlife resorts), elec-
tronic jails by which offenders are continuously monitored, large-scale inte-
grated sports systems, office systems deploying active badges to know about
the whereabouts of their employees, and so on.

15. Q: Sketch a design for a home system consisting of a separate media server
that will allow for the attachment of a wireless client. The latter is connected
to (analog) audio/video equipment and transforms the digital media streams to
analog output. The server runs on a separate machine, possibly connected to
the Internet, but has no keyboard and/or monitor connected.

SOLUTIONS TO CHAPTER 2 PROBLEMS

1. Q: If a client and a server are placed far apart, we may see network latency
dominating overall performance. How can we tackle this problem?
A: It really depends on how the client is organized. It may be possible to
divide the client-side code into smaller parts that can run separately. In that
case, when one part is waiting for the server to respond, we can schedule
another part. Alternatively, we may be able to rearrange the client so that it can
do other work after having sent a request to the server. This last solution effec-
tively replaces the synchronous client-server communication with asyn-
chronous one-way communication.

4 PROBLEM SOLUTIONS FOR CHAPTER 3
2. Q: What is a three-tiered client-server architecture?

A: A three-tiered client-server architecture consists of three logical layers,
where each layer is, in principle, implemented at a separate machine. The
highest layer consists of a client user interface, the middle layer contains the
actual application, and the lowest layer implements the data that are being
used.

3. Q: What is the difference between a vertical distribution and a horizontal dis-
tribution?
A: Vertical distribution refers to the distribution of the different layers in a
multitiered architectures across multiple machines. In principle, each layer is
implemented on a different machine. Horizontal distribution deals with the
distribution of a single layer across multiple machines, such as distributing a
single database.

4. Q: Consider a chain of processes P1, P2, ..., Pn implementing a multitiered
client-server architecture. Process P i is client of process P i + 1 , and P i will
return a reply to Pi-1 only after receiving a reply from P i + 1 . What are the main
problems with this organization when taking a look at the request-reply perfor-
mance at process P1 ?
A: Performance can be expected to be bad for large n. The problem is that
each communication between two successive layers is, in principle, between
two different machines. Consequently, the performance between P 1 and P 2

may also be determined by n - 2 request-reply interactions between the other
layers. Another problem is that if one machine in the chain performs badly or
is even temporarily unreachable, then this will immediately degrade the perfor-
mance at the highest level.

5. Q: In a structured overlay network, messages are routed according to the
topology of the overlay. What is an important disadvantage of this approach?
A: The problem is that we are dealing only with logical paths. It may very
well be the case that two nodes A and B which are neighbors in the overlay
network are physically placed far apart. As a consequence, the logically short
path between A and B may require routing a message along a very long path
in the underlying physical network.

6. Q: Consider the CAN network from Fig. 2-0. How would you route a message
from the node with coordinates (0.2,0.3) to the one with coordinates (0.9,0.6)?
A: There are several possibilities, but if we want to follow the shortest path
according to a Euclidean distance, we should follow the route (0.2,0.3) ^
(0.6,0.7) ^ (0.9,0.6), which has a distance of 0.882. The alternative route
(0.2,0.3) ^ (0.7,0.2) ^ (0.9,0.6) has a distance of 0.957.

5 PROBLEM SOLUTIONS FOR CHAPTER 3
7. Q: Considering that a node in CAN knows the coordinates of its immediate

neighbors, a reasonable routing policy would be to forward a message to the
closest node toward the destination. How good is this policy?
A: In our example from the previous question, it can already be seen that it
need not lead to the best route. If node (0.2,0.3) follows this policy for the
message destined for node (0.9,0.6), it would send it off to node (0.7,0.2).

8. Q: Consider an unstructured overlay network in which each node randomly
chooses c neighbors. If P and Q are both neighbors of R, what is the probabil-
ity that they are also neighbors of each other?
A: Consider a network of N nodes. If each node chooses c neighbors at ran-
dom, then the probability that P will choose Q, or Q chooses P is roughly
2c / (N -1) .

9. Q: Consider again an unstructured overlay network in which every node ran-
domly chooses c neighbors. To search for a file, a node floods a request to its
neighbors and requests those to flood the request once more. How many nodes
will be reached?
A: An easy upper bound can be computed as c x (c -1) , but in that case we
ignore the fact that neighbors of node P can be each other's neighbor as well.
The probability q that a neighbor of P will flood a message only to nonneigh-
bors of P is 1 minus the probability of sending it to at least one neighbor of P:

q =1 - s(c-')(N^T I (' - N̂T ^
In that case, this flooding strategy will reach c x q (c - 1) nodes. For example,
with c = 20 and N = 10,000, a query will be flooded to 365.817 nodes.

10. Q: Not every node in a peer-to-peer network should become superpeer. What
are reasonable requirements that a superpeer should meet?
A: In the first place, the node should be highly available, as many other nodes
rely on it. Also, it should have enough capacity to process requests. Most
important perhaps is that fact that it can be trusted to do its job well.

11. Q: Consider a BitTorrent system in which each node has an outgoing link with
a bandwidth capacity B o u t and an incoming link with bandwidth capacity Bin.
Some of these nodes (called seeds) voluntarily offer files to be downloaded by
others. What is the maximum download capacity of a BitTorrent client if we
assume that it can contact at most one seed at a time?
A: We need to take into account that the outgoing capacity of seeding nodes
needs to be shared between clients. Let us assume that there are S seeders and
N clients, and that each client randomly picks one of the seeders. The joint
outgoing capacity of the seeders is S x Bout, giving each of the clients
S x B o u t / N immediate download capacity. In addition, if clients help each

6 PROBLEM SOLUTIONS FOR CHAPTER 3
other, each one of them will be able to download chunks at a rate of B o u t ,
assuming that B i n > B o u t . Note that because of the tit-for-tat policy, the down-
load capacity of a BitTorrent client is mainly dictated by its outgoing capacity.
In conclusion, the total download capacity will be S x B o u t / N + B o u t .

12. Q: Give a compelling (technical) argument why the tit-for-tat policy as used in
BitTorrent is far from optimal for file sharing in the Internet.
A: The reasoning is relatively simple. Most BitTorrent clients are operated
behind asymmetric links such as provided by ADSL or cable modems. In gen-
eral, clients are offered a high incoming bandwidth capacity, but no one really
expects that clients have services to offer. BitTorrent does not make this
assumption, and turns clients into collaborative servers. Having symmetric
connections is then a much better match for the tit-for-tat policy.

13. Q: We gave two examples of using interceptors in adaptive middleware. What
other examples come to mind?
A: There are several. For example, we could use an interceptor to support
mobility. In that case, a request-level interceptor would first look up the cur-
rent location of a referenced object before the call is forwarded. Likewise, an
interceptor can be used to transparently encrypt messages when security is at
stake. Another example is when logging is needed. Instead of letting this be
handled by the application, we could simply insert a method-specific intercep-
tor that would record specific events before passing a call to the referenced
object. More of such example will easily come to mind.

14. Q: To what extent are interceptors dependent on the middleware where they
are deployed?
A: In general, interceptors will be highly middleware-dependent. If we con-
sider Fig. 2-0, it is easy to see why: the client stub will most likely be tightly
bound to the lower level interfaces offered by the middleware, just as message-
level interceptors will be highly dependent on the interaction between middle-
ware and the local operating system. Nevertheless, it is possible to standardize
these interfaces, opening the road to developing portable interceptors, albeit
often for a specific class of middleware. This last approach has been followed
for CORBA.

15. Q: Modern cars are stuffed with electronic devices. Give some examples of
feed-back control systems in cars.
A: One obvious one is cruise control. On the one hand this subsystem mea-
sures current speed, and when it changes from the required setting, the car is
slowed down or speeded up. The anti-lock braking systems (ABS) is another
example. By pulsating the brakes of a car, while at the same time regulating
the pressure that each wheel is exerting, it is possible to continue steering
without losing control because the wheels are blocked. A last example is

7 PROBLEM SOLUTIONS FOR CHAPTER 3
formed by the closed circuit of sensors that monitor engine condition. As soon
as a dangerous state is reached, a car may come to an automatic halt to prevent
the worst.

16. Q: Give an example of a self-managing system in which the analysis compo-
nent is completely distributed or even hidden.
A: We already came across this type of system: in unstructured peer-to-peer
systems where nodes exchange membership information, we saw how a topol-
ogy could be generated. The analysis component consists of dropping certain
links that will not help converge to the intended topology. Similar examples
can be found in other such systems as we referred to as well.

17. Q: Sketch a solution to automatically determine the best trace length for pre-
dicting replication policies in Globule.
A: An origin server would need to use the traces from 7 to Ti+1 to check its
prediction of policy for that period. It can simply see whether the policy that
would have been chosen on the actual access patterns is the same as the one
chosen based on the requests in the period 7_i to 7. This would allow the
server to compute the prediction error. By varying the trace length, the origin
server would be able find the length for which the prediction is minimal. In
this way, we get an automatic determination of the optimal trace length, effec-
tively contributing to the self-managing nature of Globule.

18. Q: Using existing software, design and implement a BitTorrent-based system
for distributing files to many clients from a single, powerful server. Matters are
simplified by using a standard Web server that can operate as tracker.

SOLUTIONS TO CHAPTER 3 PROBLEMS

1. Q: In this problem you are to compare reading a file using a single-threaded
file server and a multithreaded server. It takes 15 msec to get a request for
work, dispatch it, and do the rest of the necessary processing, assuming that
the data needed are in a cache in main memory. If a disk operation is needed,
as is the case one-third of the time, an additional 75 msec is required, during
which time the thread sleeps. How many requests/sec can the server handle if
it is single threaded? If it is multithreaded?
A: In the single-threaded case, the cache hits take 15 msec and cache misses
take 90 msec. The weighted average is 2/3 x 15 + 1/3 x 90. Thus the mean
request takes 40 msec and the server can do 25 per second. For a multi-
threaded server, all the waiting for the disk is overlapped, so every request
takes 15 msec, and the server can handle 66 2/3 requests per second.

8 PROBLEM SOLUTIONS FOR CHAPTER 3
2. Q: Would it make sense to limit the number of threads in a server process?

A: Yes, for two reasons. First, threads require memory for setting up their own
private stack. Consequently, having many threads may consume too much
memory for the server to work properly. Another, more serious reason, is that,
to an operating system, independent threads tend to operate in a chaotic man-
ner. In a virtual memory system it may be difficult to build a relatively stable
working set, resulting in many page faults and thus I/O. Having many threads
may thus lead to a performance degradation resulting from page thrashing.
Even in those cases where everything fits into memory, we may easily see that
memory is accessed following a chaotic pattern rendering caches useless.
Again, performance may degrade in comparison to the single-threaded case.

3. Q: In the text, we described a multithreaded file server, showing why it is bet-
ter than a single-threaded server and a finite-state machine server. Are there
any circumstances in which a single-threaded server might be better? Give an
example.
A: Yes. If the server is entirely CPU bound, there is no need to have multiple
threads. It may just add unnecessary complexity. As an example, consider a
telephone directory assistance number for an area with 1 million people. If
each (name, telephone number) record is, say, 64 characters, the entire
database takes 64 megabytes, and can easily be kept in the server's memory to
provide fast lookup.

4. Q: Statically associating only a single thread with a lightweight process is not
such a good idea. Why not?
A: Such an association effectively reduces to having only kernel-level threads,
implying that much of the performance gain of having threads in the first
place, is lost.

5. Q: Having only a single lightweight process per process is also not such a
good idea. Why not?
A: In this scheme, we effectively have only user-level threads, meaning that
any blocking system call will block the entire process.

6. Q: Describe a simple scheme in which there are as many lightweight pro-
cesses as there are runnable threads.
A: Start with only a single LWP and let it select a runnable thread. When a
runnable thread has been found, the LWP creates another LWP to look for a
next thread to execute. If no runnable thread is found, the LWP destroys itself.

7. Q: X designates a user's terminal as hosting the server, while the application is
referred to as the client. Does this make sense?
A: Yes, although it may seem a bit confusing. The whole idea is that the server
controls the hardware and the application can send requests to manipulate that

9 PROBLEM SOLUTIONS FOR CHAPTER 3
hardware. From this perspective the X Window server should indeed reside on
the user's machine, having the application acting as its client.

8. Q: The X protocol suffers from scalability problems. How can these problems
be tackled?
A: There are essentially two scalability problems. First, numerical scalability
is problematic in the sense that too much bandwidth is needed. By using com-
pression techniques, bandwidth can be considerably reduced. Second, there is
a geographical scalability problem as an application and the display generally
need to synchronize too much. By using cachinng techniques by which effec-
tively state of the display is maintained at the application side, much synchro-
nization traffic can be avoided as the application can inspect the local cache to
fins out what the state of the display is.

9. Q: Proxies can support replication transparency by invoking each replica, as
explained in the text. Can (the server side of) an application be subject to a
replicated calls?
A: Yes: consider a replicated object A invoking another (nonreplicated) object
B. If A consists of k replicas, an invocation of B will be done by each replica.
However, B should normally be invoked only once. Special measures are
needed to handle such replicated invocations.

10. Q: Constructing a concurrent server by spawning a process has some advan-
tages and disadvantages compared to multithreaded servers. Mention a few.
A: An important advantage is that separate processes are protected against
each other, which may prove to be necessary as in the case of a superserver
handling completely independent services. On the other hand, process spawn-
ing is a relatively costly operation that can be saved when using multithreaded
servers. Also, if processes do need to communicate, then using threads is much
cheaper as in many cases we can avoid having the kernel implement the com-
munication.

11. Q: Sketch the design of a multithreaded server that supports multiple protocols
using sockets as its transport-level interface to the underlying operating sys-
tem.
A: A relatively simple design is to have a single thread T waiting for incoming
transport messages (TPDUs). If we assume the header of each TPDU contains
a number identifying the higher-level protocol, the tread can take the payload
and pass it to the module for that protocol. Each such module has a separate
thread waiting for this payload, which it treats as an incoming request. After
handling the request, a response message is passed to T, which, in turn, wraps
it in a transport-level message and sends it to tthe proper destination.

10 PROBLEM SOLUTIONS FOR CHAPTER 3
12. Q: How can we prevent an application from circumventing a window man-

ager, and thus being able to completely mess up a screen?
A: Use a microkernel approach by which the windowing system including the
window manager are run in such a way that all window operations are required
to go through the kernel. In effect, this is the essence of transferring the client-
server model to a single computer.

13. Q: Is a server that maintains a TCP/IP connection to a client stateful or state-
less?
A: Assuming the server maintains no other information on that client, one
could justifiably argue that the server is stateless. The issue is that not the
server, but the transport layer at the server maintains state on the client. What
the local operating systems keep track of is, in principle, of no concern to the
server.

14. Q: Imagine a Web server that maintains a table in which client IP addresses
are mapped to the most recently accessed Web pages. When a client connects
to the server, the server looks up the client in its table, and if found, returns the
registered page. Is this server stateful or stateless?
A: It can be strongly argued that this is a stateless server. The important issue
with stateless designs is not if any information is maintained by the server on
its clients, but instead whether that information is needed for correctness. In
this example, if the table is lost for what ever reason, the client and server can
still properly interact as if nothing happened. In a stateful design, such an
interaction would be possible only after the server had recovered from a possi-
ble fault.

15. Q: Strong mobility in UNIX systems could be supported by allowing a process
to fork a child on a remote machine. Explain how this would work.
A: Forking in UNIX means that a complete image of the parent is copied to the
child, meaning that the child continues just after the call to fork. A similar
approach could be used for remote cloning, provided the target platform is
exactly the same as where the parent is executing. The first step is to have the
target operating system reserve resources and create the appropriate process
and memory map for the new child process. After this is done, the parent's
image (in memory) can be copied, and the child can be activated. (It should be
clear that we are ignoring several important details here.)

16. Q: In Fig. 3-0 it is suggested that strong mobility cannot be combined with
executing migrated code in a target process. Give a counterexample.
A: If strong mobility takes place through thread migration, it should be possi-
ble to have a migrated thread be executed in the context of the target process.

11 PROBLEM SOLUTIONS FOR CHAPTER 3
17. Q: Consider a process P that requires access to file F which is locally avail-

able on the machine where P is currently running. When P moves to another
machine, it still requires access to F. If the file-to-machine binding is fixed,
how could the systemwide reference to F be implemented?
A: The simplest solution is to create a separate process Q that handles remote
requests for F. Process P is offered the same interface to F as before, for
example in the form of a proxy. Effectively, process Q operates as a file server.

18. Q: Describe in detail how TCP packets flow in the case of TCP handoff, along
with the information on source and destination addresses in the various head-
ers.
A: There are various ways of doing this, but a simple one is to let a front end
to execute a three-way handshake and from there on forward packets to a
selected server. That server sends TCP PDUs in which the source address cor-
responds to that of the front end. An alternative is to forward the first packet to
a server. Note, however, that in this case the front end will continue to stay in
the loop. The advantage of this scheme is that the selected server builds up the
required TCP state (such as the sequence numbers to be used) instead of
obtaining this information from the front end as in the first scenario.

SOLUTIONS TO CHAPTER 4 PROBLEMS

1. Q: In many layered protocols, each layer has its own header. Surely it would
be more efficient to have a single header at the front of each message with all
the control in it than all these separate headers. Why is this not done?
A: Each layer must be independent of the other ones. The data passed from
layer k + 1 down to layer k contains both header and data, but layer k cannot
tell which is which. Having a single big header that all the layers could read
and write would destroy this transparency and make changes in the protocol of
one layer visible to other layers. This is undesirable.

2. Q: Why are transport-level communication services often inappropriate for
building distributed applications?
A: They hardly offer distribution transparency meaning that application devel-
opers are required to pay significant attention to implementing communica-
tion, often leading to proprietary solutions. The effect is that distributed appli-
cations, for example, built directly on top of sockets are difficult to port and to
interoperate with other applications.

3. Q: A reliable multicast service allows a sender to reliably pass messages to a
collection of receivers. Does such a service belong to a middleware layer, or
should it be part of a lower-level layer?
A: In principle, a reliable multicast service could easily be part of the transport

12 PROBLEM SOLUTIONS FOR CHAPTER 3
layer, or even the network layer. As an example, the unreliable IP multicasting
service is implemented in the network layer. However, because such services
are currently not readily available, they are generally implemented using trans-
port-level services, which automatically places them in the middleware. How-
ever, when taking scalability into account, it turns out that reliability can be
guaranteed only if application requirements are considered. This is a strong
argument for implementing such services at higher, less general layers.

4. Q: Consider a procedure incr with two integer parameters. The procedure adds
one to each parameter. Now suppose that it is called with the same variable
twice, for example, as incr(i, i). If i is initially 0, what value will it have after-
ward if call-by-reference is used? How about if copy/restore is used?
A: If call by reference is used, a pointer to i is passed to incr. It will be incre-
mented two times, so the final result will be two. However, with copy/restore, i
will be passed by value twice, each value initially 0. Both will be incremented,
so both will now be 1. Now both will be copied back, with the second copy
overwriting the first one. The final value will be 1, not 2.

5. Q: C has a construction called a union, in which a field of a record (called a
struct in C) can hold any one of several alternatives. At run time, there is no
sure-fire way to tell which one is in there. Does this feature of C have any
implications for remote procedure call? Explain your answer.
A: If the runtime system cannot tell what type value is in the field, it cannot
marshal it correctly. Thus unions cannot be tolerated in an RPC system unless
there is a tag field that unambiguously tells what the variant field holds. The
tag field must not be under user control.

6. Q: One way to handle parameter conversion in RPC systems is to have each
machine send parameters in its native representation, with the other one doing
the translation, if need be. The native system could be indicated by a code in
the first byte. However, since locating the first byte in the first word is pre-
cisely the problem, can this actually work?
A: First of all, when one computer sends byte 0, it always arrives in byte 0.
Thus the destination computer can simply access byte 0 (using a byte instruc-
tion) and the code will be in it. It does not matter whether this is the low-order
byte or the high-order byte. An alternative scheme is to put the code in all the
bytes of the first word. Then no matter which byte is examined, the code will
be there.

7. Q: Assume a client calls an asynchronous RPC to a server, and subsequently
waits until the server returns a result using another asynchronous RPC. Is this
approach the same as letting the client execute a normal RPC? What if we
replace the asynchronous RPCs with asynchronous RPCs?
A: No, this is not the same. An asynchronous RPC returns an acknowledgment

13 PROBLEM SOLUTIONS FOR CHAPTER 3
to the caller, meaning that after the first call by the client, an additional mes-
sage is sent across the network. Likewise, the server is acknowledged that its
response has been delivered to the client. Two asynchronous RPCs may be the
same, provided reliable communication is guaranteed. This is generally not the
case.

8. Q: Instead of letting a server register itself with a daemon as in DCE, we could
also choose to always assign it the same endpoint. That endpoint can then be
used in references to objects in the server's address space. What is the main
drawback of this scheme?
A: The main drawback is that it becomes much harder to dynamically allocate
objects to servers. In addition, many endpoints need to be fixed, instead of just
one (i.e., the one for the daemon). For machines possibly having a large num-
ber of servers, static assignment of endpoints is not a good idea.

9. Q: Would it be useful to also make a distinction between static and dynamic
RPCs?
A: Yes, for the same reason it is useful with remote object invocations: it sim-
ply introduces more flexibility. The drawback, however, is that much of the
distribution transparency is lost for which RPCs were introduced in the first
place.

10. Q: Describe how connectionless communication between a client and a server
proceeds when using sockets.
A: Both the client and the server create a socket, but only the server binds the
socket to a local endpoint. The server can then subsequently do a blocking
read call in which it waits for incoming data from any client. Likewise, after
creating the socket, the client simply does a blocking call to write data to the
server. There is no need to close a connection.

11. Q: Explain the difference between the primitives mpLbsend and mpLisend in
MPI.
A: The primitive mpLbsend uses buffered communication by which the caller
passes an entire buffer containing the messages to be sent, to the local MPI
runtime system. When the call completes, the messages have either been trans-
ferred, or copied to a local buffer. In contrast, with mpLisend, the caller passes
only a pointer to the message to the local MPI runtime system after which it
immediately continues. The caller is responsible for not overwriting the mes-
sage that is pointed to until it has been copied or transferred.

12. Q: Suppose that you could make use of only transient asynchronous communi-
cation primitives, including only an asynchronous receive primitive. How
would you implement primitives for transient synchronous communication?
A: Consider a synchronous send primitive. A simple implementation is to send
a message to the server using asynchronous communication, and subsequently

14 PROBLEM SOLUTIONS FOR CHAPTER 3
let the caller continuously poll for an incoming acknowledgment or response
from the server. If we assume that the local operating system stores incoming
messages into a local buffer, then an alternative implementation is to block the
caller until it receives a signal from the operating system that a message has
arrived, after which the caller does an asynchronous receive.

13. Q: Suppose that you could make use of only transient synchronous communi-
cation primitives. How would you implement primitives for transient asyn-
chronous communication?
A: This situation is actually simpler. An asynchronous send is implemented by
having a caller append its message to a buffer that is shared with a process that
handles the actual message transfer. Each time a client appends a message to
the buffer, it wakes up the send process, which subsequently removes the mes-
sage from the buffer and sends it its destination using a blocking call to the
original send primitive. The receiver is implemented in a similar fashion by
offering a buffer that can be checked for incoming messages by an application.

14. Q: Does it make sense to implement persistent asynchronous communication
by means of RPCs?
A: Yes, but only on a hop-to-hop basis in which a process managing a queue
passes a message to a next queue manager by means of an RPC. Effectively,
the service offered by a queue manager to another is the storage of a message.
The calling queue manager is offered a proxy implementation of the interface
to the remote queue, possibly receiving a status indicating the success or fail-
ure of each operation. In this way, even queue managers see only queues and
no further communication.

15. Q: In the text we stated that in order to automatically start a process to fetch
messages from an input queue, a daemon is often used that monitors the input
queue. Give an alternative implementation that does not make use of a dae-
mon.
A: A simple scheme is to let a process on the receiver side check for any
incoming messages each time that process puts a message in its own queue.

16. Q: Routing tables in IBM WebSphere, and in many other message-queuing
systems, are configured manually. Describe a simple way to do this automati-
cally.
A: The simplest implementation is to have a centralized component in which
the topology of the queuing network is maintained. That component simply
calculates all best routes between pairs of queue managers using a known rout-
ing algorithm, and subsequently generates routing tables for each queue man-
ager. These tables can be downloaded by each manager separately. This
approach works in queuing networks where there are only relatively few, but
possibly widely dispersed, queue managers.

15 PROBLEM SOLUTIONS FOR CHAPTER 3
A more sophisticated approach is to decentralize the routing algorithm, by
having each queue manager discover the network topology, and calculate its
own best routes to other managers. Such solutions are widely applied in com-
puter networks. There is no principle objection for applying them to message-
queuing networks.

17. Q: With persistent communication, a receiver generally has its own local
buffer where messages can be stored when the receiver is not executing. To
create such a buffer, we may need to specify its size. Give an argument why
this is preferable, as well as one against specification of the size.
A: Having the user specify the size makes its implementation easier. The sys-
tem creates a buffer of the specified size and is done. Buffer management
becomes easy. However, if the buffer fills up, messages may be lost. The alter-
native is to have the communication system manage buffer size, starting with
some default size, but then growing (or shrinking) buffers as need be. This
method reduces the chance of having to discard messages for lack of room, but
requires much more work of the system.

18. Q: Explain why transient synchronous communication has inherent scalability
problems, and how these could be solved.
A: The problem is the limited geographical scalability. Because synchronous
communication requires that the caller is blocked until its message is received,
it may take a long time before a caller can continue when the receiver is far
away. The only way to solve this problem is to design the calling application
so that it has other useful work to do while communication takes place, effec-
tively establishing a form of asynchronous communication.

19. Q: Give an example where multicasting is also useful for discrete data
streams.
A: Passing a large file to many users as is the case, for example, when updat-
ing mirror sites for Web services or software distributions.

20. Q: Suppose that in a sensor network measured temperatures are not times-
tamped by the sensor, but are immediately sent to the operator. Would it be
enough to guarantee only a maximum end-to-end delay?
A: Not really if we assume that the operator would still need to know when the
measurement took place. In this case, a timestamp can be attached when the
measurement is received, but this would mean that we should also have guar-
antees for minimum end-to-end delays.

21. Q: How could you guarantee a maximum end-to-end delay when a collection
of computers is organized in a (logical or physical) ring?
A: We let a token circulate the ring. Each computer is permitted to send data
across the ring (in the same direction as the token) only when holding the
token. Moreover, no computer is allowed to hold the token for more than T

16 PROBLEM SOLUTIONS FOR CHAPTER 3
seconds. Effectively, if we assume that communication between two adjacent
computers is bounded, then the token will have a maximum circulation time,
which corresponds to a maximum end-to-end delay for each packet sent.

22. Q: How could you guarantee a minimum end-to-end delay when a collection
of computers is organized in a (logical or physical) ring?
A: Strangely enough, this is much harder than guaranteeing a maximum delay.
The problem is that the receiving computer should, in principle, not receive
data before some elapsed time. The only solution is to buffer packets as long
as necessary. Buffering can take place either at the sender, the receiver, or
somewhere in between, for example, at intermediate stations. The best place to
temporarily buffer data is at the receiver, because at that point there are no
more unforeseen obstacles that may delay data delivery. The receiver need
merely remove data from its buffer and pass it to the application using a sim-
ple timing mechanism. The drawback is that enough buffering capacity needs
to be provided.

23. Q: Despite that multicasting is technically feasible, there is very little support
to deploy it in the Internet. The answer to this problem is to be sought in
down-to-earth business models: no one really knows how to make money out
of multicasting. What scheme can you invent?
A: The problem is mainly caused by ISPs, as they see no reason to save on
bandwidth (their clients are paying anyway). However, matters may change in
scenarios such as the following. An Internet broadcasting service pays for a
certain quality-of-service as promised by various ISPs. Each of these ISPs will
see a drop in their income when they cannot meet these QoS requirements. At
this point, they may now have an incentive to start deploying multicasting as
they can offer better (and guaranteed) service.

24. Q: Normally, application-level multicast trees are optimized with respect
stretch, which is measured in terms of delay or hop counts. Give an example
where this metric could lead to very poor trees.
A: The underlying assumption with stretch is that communication delays pre-
dominate performance. However, in the case of, for example, video broadcast-
ing, it is the available which counts. In that case, we would like to construct
trees that maximize costs (measured in terms of bandwidth).

25. Q: When searching for files in an unstructured peer-to-peer system, it may
help to restrict the search to nodes that have similar files as yourself. Explain
how gossiping can help to find those nodes.
A: The idea is very simple: if, during gossiping, nodes exchange membership
information, every node will eventually get to know about all other nodes in
the system. Each time it discovers a new node, it can be evaluated with respect
to its semantic proximity, for example, by counting the number of files in

17 PROBLEM SOLUTIONS FOR CHAPTER 3
common. The semantically nearest nodes are then selected for submitting a
search query.

SOLUTIONS TO CHAPTER 5 PROBLEMS

1. Q: Give an example of where an address of an entity E needs to be further
resolved into another address to actually access E.
A: IP addresses in the Internet are used to address hosts. However, to access a
host, its IP address needs to be resolved to, for example, an Ethernet address.

2. Q: Would you consider a URL such as http://www.acme.org/index.html to be
location independent? What about http://www.acme.nl/index.htmll
A: Both names can be location independent, although the first one gives fewer
hints on the location of the named entity. Location independent means that the
name of the entity is independent of its address. By just considering a name,
nothing can be said about the address of the associated entity.

3. Q: Give some examples of true identifiers.
A: Examples are ISBN numbers for books, identification numbers for software
and hardware products, employee numbers within a single organization, and
Ethernet addresses (although some addresses are used to identify a machine
instead of just the Ethernet board).

4. Q: Is an identifier allowed to contain information on the entity it refers to?
A: Yes, but that information is not allowed to change, because that would
imply changing the identifier. The old identifier should remain valid, so that
changing it would imply that an entity has two identifiers, violating the second
property of identifiers.

5. Q: Outline an efficient implementation of globally unique identifiers.
A: Such identifiers can be generated locally in the following way. Take the
network address of the machine where the identifier is generated, append the
local time to that address, along with a generated pseudo-random number.
Although, in theory, it is possible that another machine in the world can gener-
ate the same number, chances that this happens are negligible.

6. Q: Consider the Chord system as shown in Fig. 5-0 and assume that node 7
has just joined the network. What would its finger table be and would there be
any changes to other finger tables?
A: Let us first consider the finger table for node 7. Using the same method as
we introduced when discussing Chord, it can be seen that this table will be [9,
9, 11, 18, 28]. For example, entry #2 is computed as
succ (7 + 21) = succ (9) = 9. More tables will need to change, however, in

http://www.acme.org/index.html
http://www.acme.nl/index.htmll

18 PROBLEM SOLUTIONS FOR CHAPTER 3
particular those of node 4 (which becomes [7,7,9,14,28]), node 21
([28,28,28,1,7]) and node 1 ([4,4,7,9,18]).

7. Q: Consider a Chord DHT-based system for which k bits of an m-bit identifier
space have been reserved for assigning to superpeers. If identifiers are ran-
domly assigned, how many superpeers can one expect to have in an N-node
system?
A: The total number of superpeers in an overlay of N nodes will be equal to
m i n { 2 k _ m N ,2 k }.

8. Q: If we insert a node into a Chord system, do we need to instantly update all
the finger tables?
A: Fortunately not. Consider the previous question and assume that only the
finger table of node #7 is installed and that the rest are kept as they are. The
worst that can happen is that a request to look up, say, key 5, is routed to node
#9 instead of #7. However, node #9 knows that node #7 has joined the system
and can therefore take corrective action.

9. Q: What is a major drawback of recursive lookups when resolving a key in a
DHT-based system?
A: A problem is that the requesting client will never be able to discover what
went wrong when no answer is returned. Somewhere along the route that cor-
responds to resolving the key, a message may have been lost or a node may
have failed. For this reason, an iterative lookup is sometimes preferred: the
client will know exactly which part of the lookup did not come through and
may be able to choose an alternative node to help out.

10. Q: A special form of locating an entity is called anycasting, by which a service
is identified by means of an IP address (see, for example, Sending a request to
an anycast address, returns a response from a server implementing the service
identified by that anycast address. Outline the implementation of an anycast
service based on the hierarchical location service described in Sec. 5.2.4.
A: Each service has a unique identifier associated with it. Any server imple-
menting that service, inserts its network-level address into the location service
at the directory node of the leaf domain in which the server resides. Lookup
requests use the identifier of the service, and will automatically return the
nearest server implementing that service.

11. Q: Considering that a two-tiered home-based approach is a specialization of a
hierarchical location service, where is the root?
A: The root is formed jointly by all home locations, but is partitioned in such a
way that each mobile entity has its own root server.

19 PROBLEM SOLUTIONS FOR CHAPTER 3
12. Q: Suppose that it is known that a specific mobile entity will almost never

move outside domain D, and if it does, it can be expected to return soon. How
can this information be used to speed up the lookup operation in a hierarchical
location service?
A: Simply encode the domain D in the identifier for the entity that is used for
the lookup operation. The operation can then be immediately forwarded to the
directory node dir(D), from where the search continues.

13. Q: In a hierarchical location service with a depth of k, how many location
records need to be updated at most when a mobile entity changes its location?
A: Changing location can be described as the combination of an insert and a
delete operation. An insert operation requires that at worst k +1 location
records are to be changed. Likewise, a delete operation also requires changing
k +1 records, where the record in the root is shared between the two opera-
tions. This leads to a total of 2k +1 records.

14. Q: Consider an entity moving from location A to B, while passing several
intermediate locations where it will reside for only a relatively short time.
When arriving at B, it settles down for a while. Changing an address in a hier-
archical location service may still take a relatively long time to complete, and
should therefore be avoided when visiting an intermediate location. How can
the entity be located at an intermediate location?
A: Combine the hierarchical location service with forwarding pointers. When
the entity starts to move, it leaves behind a forwarding pointer at A to its next
(intermediate) location. Each time it moves again, a forwarding pointer is left
behind. Upon arrival in B, the entity inserts its new address into the hierarchi-
cal location service. The chain of pointers is subsequently cleaned up, and the
address in A is deleted.

15. Q: The root node in hierarchical location services may become a potential bot-
tleneck. How can this problem be effectively circumvented?
A: An important observation is that we are using only random bit strings as
identifiers. As a result, we can easily partition the identifier space and install a
separate root node for each part. In addition, the partitioned root node should
be spread across the network so that accesses to it will also be spread.

16. Q: Give an example of how the closure mechanism for a URL could work.
A: Assuming a process knows it is dealing with a URL, it first extracts the
scheme identifier from the URL, such as the string ftp:. It can subsequently
look up this string in a table to find an interface to a local implementation of
the FTP protocol. The next part of the closure mechanism consists of extract-
ing the host name from the URL, such as www.cs.vu.nl, and passing that to the
local DNS name server. Knowing where and how to contact the DNS server is
an important part of the closure mechanism. It is often hard-coded into the

http://www.cs.vu.nl

PROBLEM SOLUTIONS FOR CHAPTER 3
URL name resolver that the process is executing. Finally, the last part of the
URL, which refers to a file that is to be looked up, is passed to the identified
host. The latter uses its own local closure mechanism to start the name resolu-
tion of the file name.

REFERENCES

[1] J. Campbell, “Speaker recognition: a tutorial,”Proc. IEEE, vol. 85, pp.
1437–1462, Sept. 1997.

[2] D. A. Reynolds, T. Quatieri, and R. Dunn, “Speaker verification using
adapted Gaussian mixture models,”Digital Signal Processing, vol. 10,
no. 1–3, pp. 19–41, 2000.

[3] D. A. Reynolds, “Comparison of background normalization methods for
text-independent speaker verification,” inProc. Eurospeech, 1997.

[4] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker iden-
tification using Gaussian mixture speaker models,”IEEE Trans. Speech
Audio Processing, vol. 3, no. 1, pp. 72–83, 1995.

[5] J. L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for mul-
tivariate Gaussian mixture observations of Markov chains,”IEEE Trans.
Speech Audio Processing, vol. 2, pp. 291–298, Apr. 1994.

[6] E. Bocchieri, “Vector quantization for the efficient computation of
continuous density likelihoods,” inProc. Int. Conf. Acoustics, Speech,
Signal Processing, 1993, pp. 692–695.

[7] K. M. Knill, M. J. F. Gales, and S. J. Young, “Use of Gaussian selec-
tion in large vocabulary continuous speech recognition using HMMs,”
in Proc. Int. Conf. Spoken Language Processing, 1996.

[8] D. B. Paul, “An investigation of Gaussian shortlists,” inProc. Automatic
Speech Recognition and Understanding Workshop, 1999.

[9] T. Watanabe, K. Shinoda, K. Takagi, and K.-I. Iso, “High speed speech
recognition using tree-structured probability density function,” inProc.
Int. Conf. Acoustics, Speech, Signal Processing, 1995.

[10] J. Simonin, L. Delphin-Poulat, and G. Damnati, “Gaussian density tree
structure in a multi-Gaussian HMM-based speech recognition system,”

in Proc. Int. Conf. Spoken Language Processing, 1998.

[11] T. J. Hanzen and A. K. Halberstadt, “Using aggregation to improve the
performance of mixture Gaussian acoustic models,” inProc. Int. Conf.
Acoustics, Speech, Signal Processing, 1998.

[12] M. Padmanabhan, L. R. ahl, and D. Nahamoo, “Partitioning the feature
space of a classifier with linear hyperplanes,”IEEE Trans. Speech Audio
Processing, vol. 7, no. 3, pp. 282–288, 1999.

[13] R. Auckenthaler and J. Mason, “Gaussian selection applied to text-in-
dependent speaker verification,” inProc. A Speaker Odyssey—Speaker
Recognition Workshop, 2001.

[14] J. McLaughlin, D. Reynolds, and T. Gleason, “A study of computation
speed-ups of the GMM-UBM speaker recognition system,” inProc. Eu-
rospeech, 1999.

[15] S. van Vuuren and H. Hermansky, “On the importance of components
of the modulation spectrum of speaker verification,” inProc. Int. Conf.
Spoken Language Processing, 1998.

[16] B. L. Pellom and J. H. L. Hansen, “An efficient scoring algorithm for
Gaussian mixture model based speaker identification,”IEEE Signal Pro-
cessing Lett., vol. 5, no. 11, pp. 281–284, 1998.

[17] J. Oglesby and J. S. Mason, “Optimization of neural models for speaker
identification,” inProc. Int. Conf. Acoustics, Speech, Signal Processing,
1990, pp. 261–264.

[18] Y. Bengio, R. De Mori, G. Flammia, and R. Kompe, “Global optimiza-
tion of a neural network—hidden Markov model hybrid,”IEEE Trans.
Neural Networks, vol. 3, no. 2, pp. 252–259, 1992.

[19] H. Bourlard and C. J. Wellekins, “Links between Markov models and
multilayer perceptrons,”IEEE Trans. Pattern Anal. Machine Intell., vol.
12, pp. 1167–1178, Dec. 1990.

[20] J. Navrátil, U. V. Chaudhari, and G. N. Ramaswamy, “Speaker veri-
fication using target and background dependent linear transforms and
multi-system fusion,” inProc. Eurospeech, 2001.

[21] L. P. Heck, Y. Konig, M. K. Sonmez, and M. Weintraub, “Robustness
to telephone handset distortion in speaker recognition by discriminative
feature design,”Speech Commun., vol. 31, pp. 181–192, 2000.

[22] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from in-
complete data via the EM algorithm,”J. R. Statist. Soc., vol. 39, pp.
1–38, 1977.

[23] K. Shinoda and C. H. Lee, “A structural Bayes approach to speaker
adaptation,”IEEE Trans. Speech Audio Processing, vol. 9, no. 3, pp.
276–287, 2001.

[24] K. Fukunaga,Introduction to Statistical Pattern Recognition. New
York: Academic, 1990.

[25] J. C. Junqua,Robust Speech Recogntion in Embedded Systems and PC

[26] U. V. Chaudhari, J. Navrátil, S. H. Maes, and R. A. Gopinath, “Transfor-
mation enhanced multi-grained modeling for text-independent speaker
recognition,” inProc. Int. Conf. Spoken Language Processing, 2000.

[27] Q. Lin, E.-E. Jan, C. W. Che, D.-S. Yuk, and J. Flanagan, “Selective use
of the speech spectrum and a VQGMM method for speaker identifica-
tion,” in Proc. Int. Conf. Spoken Language Processing, 1996.

[28] S. Raudys,Statistical and Neural Classifiers: An Integrated Approach
to Design. New York: Springer, 2001.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” inParallel Distributed Pro-
cessing. Cambridge, MA: MIT Press, 1986, pp. 318–364.

[30] [Online] Available: http://www.nist.gov/speech/tests/spk/index.htm.
[31] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker veri-

fication,” in Proc. A Speaker Odyssey—Speaker Recognition Workshop,
2001.

[32] B. Xiang, U. V. Chaudhari, J. Navrátil, N. Ramaswamy, and R. A.
Gopinath, “Short-time Gaussianization for robust speaker verification,”
in Proc. Int. Conf. Acoustics, Speech, Signal Processing, 2002.

[33] G. R. Doddington, M. A. Przybocki, A. F. Martin, and D. A. Reynolds,
“The NIST speaker recognition evaluation—overview, methodology,
systems, results, perspective,”Speech Communication, vol. 31, pp.
225–254, 2000.

Bing Xiang (M’03) was born in 1973 in China. He
received the B.S. degree in radio and electronics and
M.E. degree in signal and information processing
from Peking University in 1995 and 1998, respec-
tively. In January, 2003, he received the Ph.D. degree
in electrical engineering from Cornell University,
Ithaca, NY.

From 1995 to 1998, he worked on speaker recog-
nition and auditory modeling in National Laboratory
on Machine Perception, Peking University. Then he
entered Cornell University and worked on speaker

recognition and speech recognition in DISCOVER Lab as a Research Assis-
tant. He also worked in the Human Language Technology Department of IBM
Thomas J. Watson Research Center as a summer intern in both 2000 and 2001.
He was a selected remote member of the SuperSID Group in the 2002 Johns
Hopkins CLSP summer workshop in which he worked on speaker verification
with high-lelvel information. In January, 2003, he joined the Speech and Lan-
guage Processing Department of BBN Technologies where he is presently a
Senior Staff Consultant-Technology. His research interests include large vocab-
ulary speech recognition, speaker recognition, speech synthesis, keyword spot-
ting, neural networks and statistical pattern recognition.

Toby Berger (S’60–M’66–SM’74–F’78) was born in
New York, NY, on September 4, 1940. He received
the B.E. degree in electrical engineering from Yale
University, New Haven, CT in 1962, and the M.S.
and Ph.D. degrees in applied mathematics from Har-
vard University, Cambridge, MA in 1964 and 1966,
respectively.

From 1962 to 1968 he was a Senior Scientist at
Raytheon Company, Wayland, MA, specializing
in communication theory, information theory, and
coherent signal processing. In 1968 he joined the

faculty of Cornell University, Ithaca, NY where he is presently the Irwin and
Joan Jacobs Professor of Engineering. His research interests include informa-
tion theory, random fields, communication networks, wireless communications,
video compression, voice and signature compression and verification, neuroin-
formation theory, quantum information theory, and coherent signal processing.
He is the author/co-author of Rate Distortion Theory: A Mathematical Basis
for Data Compression, Digital Compression for Multimedia: Principles and
Standards, and Information Measures for Discrete Random Fields.

Dr. Berger has served as editor-in-chief of the IEEE TRANSACTIONS ON

INFORMATION THEORY and as president of the IEEE Information Theory

