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Abstract—We present an integrated system with structural notthe person is required to speak pre-determined words or sen-
Gaussian mixture models (SGMMs) and a neural network for tences. The focus of this paper is text-independent speaker ver-
purposes of achieving both computational efficiency and high ification.

accuracy in text-independent speaker verification. A structural . .

backgroﬁnd model (SpBM) is co%structed first by hierarchically Gaussian mlxture models (GMMS_) [2], [3] recently have be-
clustering all Gaussian mixture components in a universal back- Come the dominant approach in text-independent speaker recog-
ground model (UBM). In this way the acoustic space is partitioned nition. One of the powerful attributes of GMMs is their ca-
into multiple regions in different levels of resolution. For e_ach pability to form smooth approximations to arbitrarily shaped
target speaker, 8 SGMM can be generated through multilevel yqngities [4]. Although for text-dependent applications, hidden

maximum a posteriori (MAP) adaptation from the SBM. During -
test, only a small subset of Gaussian mixture components are Markov models (HMMs) can have some advantages when in-

scored for each feature vector in order to reduce the computational Corporating temporal knowledge, GMMs still show the best per-

cost significantly. Furthermore, the scores obtained in different formance to date for text-independent speaker recognition with
layers of the tree-structured models are combined via a neural high accuracy. However, to have a detailed description of the
network for final decision. Different configurations are compared acoustic space and also achieve good verification performance,

in the experiments conducted on the telephony speech data usedth b fG . it ts i h del |
in the NIST speaker verification evaluation. The experimental € humber o Laussian MIXUre cComponents in eéach model IS

results show that computational reduction by a factor of 17 can usually large, especially when diagonal covariance matrices are
be achieved with 5% relative reduction in equal error rate (EER) used. In a GMM-based text-independent speaker verification
compared with the baseline. The SGMM-SBM also shows some system, generally a universal background model (UBM) with a
advantages over the recently proposed hash GMM, including |59e number of Gaussian mixture components is created based
higher speed and better verification performance.

EDICS: 1-SPEA on hours of sp(_eech data from nqntarget speak_er_s. Then a target
speaker GMM is created by maximum a posteriori (MAP) adap-
tation [5] of the UBM. Although the computational cost nearly
can be halved based on the correspondence between the UBM
and the target GMM, scoring all components within the UBM
[. INTRODUCTION for each test feature vector still dominates the processing time
ESEARCH on speaker recognition [1], including identifi during verification.

[rhere have been some approaches proposed for speech recog-

cation and verification, has been an active area for severa bef ¢ d th tati G ) it
decades. The goal is to have a machine automatically identi on betore 1o reduce the computation of >aussian mixture

a particular person or verify a person’s claimed identity fro mpo'nents n HMMS’ such as vector quan'tlzatlon'(VQ) [6]_ or
his/her voice. As one of the techniques in biometrics, spea ussian selection [7]. The feature space is partitioned with a

recognition can be used in many access control appIicatioME,Ctor quantizer to associate a_shortllst Of.G aussians with each
such as network security, phone transactions, room access, eword. Only the Gaussians in the shortlist are computed pre-

The speakers are divided into two groups, the enrolled tar é§ély, instead of all Gaussians. The likelihood computation can

speakers and the nontarget speakers or background spea &geduced significantly with small loss of recognition accuracy.

Both identification and verification can be classified into text-in= everal methods using different thresholding schemes to com-

dependent and text-dependent applications based on whether. shorthst_s of_Gau33|ans t_hat are most likely tq hav:_a a sig-
nificant contribution to the mixture sum were devised in [8].
In [9] and [10], approaches based on tree-structured Gaussian

. . . . . . densities were proposed to achieve computational efficiency in
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Recently, inspired by Gaussian selection in speech recogoi-the SGMM-SBM are combined via a neural network to
tion, ahash GMM was proposed and applied to text-independémtm the final decision. This integrated system shows larger
speaker verification [13]. In this method a small hash GMM idiscriminative ability than the baseline system GMM-UBM.
trained first with entire training data. Then a shortlist of the invariable configurations on the tree structures, distance mea-
dices of mixture components in the large UBM is generated feures, cluster centroid estimations and neural networks are
each hash GMM component based on the occurring frequeempared in this paper. Experiments are conducted on the data
cies of the best scoring components in the hash GMM and thged in the NIST 1999 speaker verification evaluation. The
UBM. For each test feature vector, only those componentsresults show that computational reduction by a factor of 17
the shortlist of the highest-scoring hash component are evatan be achieved with 5% relative reduction in equal error rate
ated. Computational reduction by a factor of ten was achievf8ER) compared with the GMM-UBM. The SGMM-SBM also
with minor degradation in verification performance. Some othehows advantages over the hash GMM one of which is better
approaches to reducing the computational cost in speaker veérification performance.
fication systems have also been proposed. It was shown that by his paper is organized as follows. In Section Il we briefly
lowering model order or decreasing frame rate [14], [15], comeview GMM-based speaker verification systems. Then we in-
putational cost can be reduced by a factor of four with negligibteoduce the construction of the SBM and SGMM in detail in
degradation of verification performance. An efficient scoring aBection Ill. The verification procedure and the score fusion via
gorithm was proposed in [16] for speaker identification. Rapideural network are presented in Section IV. In Section V our ex-
pruning of unlikely speaker model candidates was achieved pgrimental results are reported. The last section summarizes the
reordering the sequence of observation vectors. It improved thrincipal conclusions.
speed by a factor of six compared to the conventional sequential
sampling. Il. GAUSSIAN MIXTURE MODELS

In addition to GMM-based system, artificial neural networks Since the construction of a SBM is based on the well-trained

(ANN) also have drawn much attention in both the spee%hBM and also the GMM-UBM acts as a baseline system in this

recognition and the speaker recognition communities. The aé)éper we briefly review the GMM-UBM speaker recognition
a 1

plication of neural networks to speaker recognition dates b & tem [2]. The UBM with\/ Gaussian components is trained

more than a decade [17.]'. Belng no_nh_near classifiers, NEULS the EM algorithm [22] using hours of speech data from non-
networks possess the ability to discriminate the characterlst{ S

of different speakers. But when the dimensionality of the inpltjurgetspeakers. The likelihood function dkadimensional fea-

feature space is high and the network structure becomes e vectorz, Is

phisticated, the convergence during training is slow. Moreover M
th performance obtained when using_ a neural network alone p(Ze| \vBar) = ZwiGi(ft) (1)
is inferior to that of GMM. Some hybrids of neural networks i—1

and HMMs were introduced before in speech recognition with
the neural network acting as a pre-processor [18] or posterigherew; is the weight of the-th component, and;(.) is the
evaluator [19] for HMMs. Recently a neural network was usegaussian probability density function (pdf) with megnand
in speaker verification as a post-processor in the score legévariance matrix:;

to combine the scores from three GMM-based systems with

different features [20]. The performance from multisystem Gi(T) = ——
fusion is better than that from any of the three systems. There (2m)= |52

are also some other applications of neural networks in speaEgrr each target speaker, a GMM can be created through MAP

e_%(ft—ﬁé)'l‘zjl(ftﬁi)' (2)

recognition, such as to design discriminative features for robus tation of the UBM. Based on the experimental result
speaker recognition to compensate for telephone hand@ggpPtaton ot the - based o € experimental results,
apting only the mean for each Gaussian component yields

. . a
21]. . e
distortion [21] o . - the best performance in speaker verification. The mé&aof
For purposes of achieving both computational efficiency anfla ih component of the GMM is obtained by

verification performance, we propose an integrated system wi
structural Gaussian mixture models (SGMMs) and a multilayer R i o ro,
feed-forward neural network. A structural background model vi= ni + TEi(x) + ni + Pt (3)
(SBM) is created first based on a well-trained UBM. During

the construction, all Gaussian mixture components in théherez is the set of feature vectors agid is the mean of the
UBM are clustered hierarchically. In this way the acousticth component in the UBM. Herg; and £;(%) are computed
space is partitioned into multiple regions in different levelfom the expectation step of the EM algorithm as

of resolution. Each node in the tree-structured SBM is rep-

resented by a Gaussian. For each target speaker, a SGMM is o

generated through multilevel MAP adaptation on the SBM. i = memf)? )
During test, the computational cost can be reduced significantlﬁ =1

by searching down the SBM tree and scoring only a sma T

subset of the Gaussian mixture components in the SBM and Ei(%) = 1 ZP(ﬂft)ft- (5)
SGMM. Furthermore, multiple scores from different layers i =
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r is a relevance factor anél(:|#;) is the a posteriori probability
Non-target | Feature EM Tree

of thei-th component given feature vec . » UBM » SBM
' P d o Speech | Extraction Construction
. w; G;(T) Multi—
P(i|Z) = —————. (6) MAP
R SHAXES level
The spgaker verification task is a hypothesis testing proble __Target Eic;;g?on ~ SGMM
The decision between whether tiiés generated by the target Speech
speaker or by someone else is based on the average frame log-
likelihood ratio between the target GMM and the UBM. With Fig. 1.  Diagram of training.
the general assumption of independence of the feature vectors
of 7, it is calculated as Layer 1
1 o o
T (log p(Z|Arar) — log p(F|A\uBM)) Layer 2
1 T T
=7 (Z log p(#[Arar) — Zlogp(fmmm) 7
t=1 t=1
LayerL-1 (Q ~ - oo -—/

where\rqr is the parameter set of the target GMM. By thresh-
olding the average frame log-likelihood ratio, a decision can be
made to either accept or reject the target speaker hypothesis.Layer
It is observed that only a few of the mixtures contribute sig-
nificantly to the likelihood value when a large GMM is evalu- Fig. 2. Tree structure.

ated. Based on this fact and also the correspondence between

the target GMM and the UBM, a fast scoring approach was prbetweenG; andG;. It quantifies the information for discrimi-
posed [2]. For each feature vector, the t@scoring Gaussian nating between the two Gaussian components. When diagonal
components among the components in the UBM are foundcovariance matrices are assumed, it can be represented as
first. Then only the corresponding components in the target

GMM are evaluated. Sinc€ is usually far less thad/, the ., (i, ) = /Gi(:v) In de + /Gj(a:)ln Gj(x) da
computational cost is reduced by almost a half. : Gjw . Gi(z)
K
1 3 o? (k) + (pi(k) — n(k))*
[ll. CONSTRUCTION OFSBM AND SGMM 9 o2 (k)
k=1
Th ini f SBM MM is sh in Fig. 1.
e training of SBM and SG is shown in Fig o2 (k) + (i) — uj(k'))2
Based on the UBM, an.-layer tree-structured SBM, as + 5 -2/ (8
shown in Fig. 2, can be generated to model the structure of a; (k)

acoustic space. Through a top-down hierarchical clusterin herey; (k) is thekth element of the mean vectdr, ando(k)
each node in the uppdat — 1 layers represents a cluster of ‘

the Gaussian components in the UBM and is modeled byIS thzk;r;g'Sgﬁ;gg?lglrge;;;{iﬁ;rz\;zrggtcaen?:gi]

single Gaussian pdf. Each leaf node corresponds to a separate
Gaussian mixture component in the UBM. In this way, the ‘zﬁzj
2

SBM models the acoustic space in different levels of resolutiogBH(i_j) — ~In i i

Once the SBM is constructed, a target SGMM with the same AR EIHE

tree structure can be created by multilevel MAP adaptation 1 o (S 7

of the SBM. Each layer in the SGMM is generated via MAP +g (i = i) (TJ) (i — fij) )

adaptation of the corresponding layer in the SBM so that the
Gaussian components in the SGMM and the SBM retainwehich is closely tied to upper bounding the Bayes classification
close correspondence to each other, which is useful duriegor. The second term of the Bhattacharyya distance is the Ma-
verification. halanobis distance using an average covariance matrix.

A. Distance Measure B. Cluster Centroid Estimation

Before the construction of the SBM, a distance measureCluster centroid estimation is another important issue for
between two Gaussians must be defined. Several distance nteadssian clustering during the tree construction. The centroid
sures have been proposed in the literature. Kullback—Leiblafra cluster of Gaussian components can be estimated using
(KL) divergence [23] and Bhattacharyya distance [24] ammaximum likelihood (ML) estimation. In both [6] and [9],
two of the widely used measures. Consider two Gaussidnwas assumed that the numbers of data samples from each
mixture componentsy; and G; with distributionsN (ji;, ¥;) mixture component are equal. However, this may cause some
and N(fi;,%;). The symmetric KL divergence is defined agperformance degradation because the acoustic space is mod-
the sum of the relative entropy betweéh and G; and that eled inappropriately. With mixture weights considered, which



represent the amount of data corresponding to each mixture2) Then the nodes in the next layer are initiated by the

component, the ML estimation can be approximated by

uc(k)zw (10)
i€ER T
wi (020 + i(K)
(k) = 28 Z( (W3 E0) gy
ieRr Wi

wherep.(k) is thekth element of the mean vector for the cen-
troid of clusterR ando?(k) is thekth diagonal element of the
centroid covariance matrix. The weight Bfcan be calculated

as the sum of all weights; fori € R

We = E w;.

(12)

When KL divergence is used, we also propose a KL approach4)
for cluster centroid estimation. An iterative algorithm is used

minimaxmethod based on the KL divergence or Bhat-
tacharyya distance. The pdf of each node is obtained
by linear interpolation between the parameters of the
original pdf and that of the parent node [23].
3) A k-means procedure is applied to cluster Gaussian mix-
ture components into each node. In each iteration, when
KL divergence is used, the mean and variance can be up-
dated either by the ML approach [(10), (11)] or by the
KL approach [(14), (15)]. Similarly, the ML or BH ap-
proach [(16), (17)] can be applied when Bhattacharyya
distance is chosen. The initial values in both KL and BH
approaches are generated by the ML approach as men-
tioned before. The values of mean, variance and weight
are stored in each node once the distance converges.
The same procedures in step (2) and (3) are repeated for
other layers until the clusters in layBr- 1 are generated.

to minimize the sum of the KL divergence between the cluster ©) Each Gaussian component in each of the clusters in layer

centroid and all the Gaussians within the cluster, i.e.,

Dk = Z dgr(c,i).

1ER

(13)

By setting the derivatives oD with respect to the mean
(k) and variancer? (k) to zero separately, the formulae fo

updating the mean and variance are

Yier (770 + 720y ) 1ilk)
pe(k) = ( - : ) ;

(14)

Wl

. (15)

With the initial values generated by the ML approach, the fin
mean and variance can be obtained after several iterations VYé

the mean updated first in each iteration.

Similarly, to minimize the within-cluster Bhattacharyya dis
tance, the mean and variance can be updated iteratively [58

through the BH approach by

Sien (02(k) +02(k) ™" pilk)

Yier (02(k) + o2(k) ™!
|R|

2
2 _ [ pe(k)—pi(k)
Yier {az<k>+o;’<k> (sefirmts) }

where|R| is the number of components in cluster

pe(k) =

(16)

ae(k) = (17)

C. Tree Construction

During the SBM tree construction process, the number p
layers L and the structure in the uppér— 1 layers are deter-
mined first before clustering. The algorithm for the Gaussian

clustering is described as follows.

1) The mean and variance of the first layer, i.e., the root
node, are calculated by (10) and (11) with all Gaussian

components of the UBM in one cluster.

r

L — 1 is stored in a separate child node, the node in the
leaf layer.

Due to the variable cluster size, the number of branches for
those nodes in laydr — 1 varies from node to node and depends
on the different approaches to tree construction. However, the
total number of leaf nodes is always equal\to
It should be pointed out that a tree structure was applied in
a multigrained model [26] for speaker recognition before. Each
node in the tree is modeled by a GMM and represents a phone
class or a phone. So all the training data must be labeled first.
However, no transcription is needed for training the SBM be-
cause the Gaussian mixture components are clustered in an un-
supervised way. It has been shown in [23] that such an unsuper-
vised mixture grouping is phonologically meaningful. We also
notice that a VQ-based GMM was proposed in [27] for text-in-
dependent speaker identification. The whole acoustic space is
clustered into several subspaces via vector quantization. Then

ch subspace is characterized by a GMM. However, for each

feature vector the scores are computed against all GMMs to
find the maximum. Therefore no computational efficiency was
rsidered there.

D. Multilevel Adaptation

After construction of the SBM, a separate model needs to be
trained for each target speaker. Since all nodes in the same layer
of the SBM compose a Gaussian mixture model, with the sum of
weights being 1, a tree-structured target SGMM can be obtained
by adapting the SBM with MAP adaptation [5] in each layer
separately. The mear; of thei-th component in layefrof the
SGMM is obtained by

7, = M,i Tlm
M,i+ Tim M+ Tim

, Ei(2) +
wgwererhm is a relevance factor for adaptation of mean in layer

i (18)

. E; ;(Z) andn, ; are obtained by

T
L1 T
Eii(#) =— Y Pi(il#), (19)
i 35
T
mi =Y PililE). (20)
t=1
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P,(i|%;) is the a posteriori probability afth componentin layer A. Scoring SBM and SGMM

I given the feature vectat, For each test feature vectdy, based on the likelihood in

each node, the highest-scoring node in the second layer of the
SBM, nodeg; ,, is found first. Then all its child nodes in the
third layer are scored. The tree is searched in this way down
i to a certain nodgy,_, , in layer L — 1. The scores obtained at
ancele,i of thei-th component in layer of the SGMM can the nodes along the path become the background scores for the
be obtained by (see (22) at the bottom of the page) wheres ~ corresponding layers. The background score in layer

a parameter vector from the prior density [5] and is a rele- 1 Z

vance factor for adaptation of variance in layewhenr; ,,, is b = 1 Zlog, max wy;Gri(Ze), 2<I<L-1

equal tor;,, and =1 eIt 29)

R =3 wherei; .5 < ¢ < 44, are the indices of those scored com-
hii = 110071 (23)  ponents in layet for 7, i.e. the child nodes of; - The root
(22) can be rearranged as (see (24) at the bottom of the pageri.oﬂe IS fa(f‘tg.l;t' All child nodes of nOdEgL—U. are e""?‘"
can be further simplified to Uated, comprising a subset of the leaf nodes. Similar with the
GMM-UBM baseline, the logarithm of the sum of the t6p

wi,; Gri(Z)

M, -
> o i Gui (&)
whereM, is the number of nodes in layérSimilarly, the vari-

Pl ) =

(21)

?l =i g i(;f) 4Tt likelihoods in the subset is used as the background score of the
M T Myi 4 71 leaf layer
33 3 (25) 1 L c
X i + P 2N .
(U l, 1% l, > [ Sp, = TZIOng[ﬁmt,iG[‘_’mt’_i(fl)t) (30)
where t=1 =1
_ T _ wherem; ;, 1 < i < C are the indices of the to@' compo-
2 1 .= 2 . . . .
Ei(2%) = _— Z Py(i|ay) ;. (26) nents in the subset. This also makes the comparison with the
-

baseline GMM-UBM fair, where the to@' likelihoods among
The weightew, ; of thei-th component in layel of the SGMM  all Gaussian components are counted. Based on the indices of

can be obtained by [2] those nodes in the SBM which contribute to different layers’
P 27 background scores, the corresponding nodes in the uppet
@i = ZJMII oLi 27) layers of the target SGMM and the correspondinteaf nodes
j=1FLj

are evaluated to generate the multiple target sceygswith

where 5<1<L.

_ i M, TlLw
M, + Tlw T i + Tlw

:r’;;; :/?/aa rter:zvggﬁzsfg:ogs: i?]aeatgt'iznﬂ?;\;v;g:tt ISn Glali\e/'lnret inIt would be straightforward to combine the multiple scores
y P 9 f{rom the SGMM and SBM via linear combination or choose
correspondence between the target GMM and the UBM in ﬁae maximum of the mglhple I|I_<eI|hqod ratios. However, these
GMM-UBM system. approaches ca_nnot bring obvious improvement over the per-
formance obtained from the leaf layer scores only, as shown
later in the experimental results section. The verification perfor-
mance obtained by using the scores from the lower layer is better
Fig. 3 is a block diagram of our speaker verification systerthan its counterpart from the upper layers since it describes the
After features are extracted from the test speech, SBM aadoustic space with higher resolution. However, it is believed
SGMM both are scored to generate the background and tartfett the scores from the upper layers still catch some useful in-
scores. These scores are combined via a multilayer perceptimmation for speaker verification. Especially in the situation

(MLP) to produce the final decision. of sparse training data, the upper layers with smaller number

Pl Wy - (28)

B. Score Combination via Multilayer Perceptron

IV. V ERIFICATION

? L i + Sy Pi|T) diag (& — 703) (@0 — 71,4)7] + romdiag [(f: — 710) (i — 514) 7]
b M,i+ T

(22)

-
S, Pi(i|)diag [(Z: — ) (@ — 700) 7] + 71w <0'21,i + diag [(fi1,; — 7,i) (i — ﬁz,i)T]>

M, + Tl
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Scoring Scores
SBM >
Test Feature . Decision
Speech Extraction Indices MLP
Scoring > _)7
SGMM
Target
Scores

Fig. 3. Diagram of test.

of Gaussians may be trained more sufficiently than the lower
layers. To reflect the nonlinear dependencies among the score
from different levels, it is desirable to use a neural network for
score combination [20]. Theory shows that the standard multi- Fig. 4. Multilayer perceptron

layer perceptron (MLP) with one hidden layer and smooth non-

linear activation functions can realize an arbitrary nonlinear dand put into the MLP, it is possible to correct some errors, i.e.,
cision boundary [28]. The three-layer MLP combines the scort&sconvert low log-likelihood ratios of target trials to a higher
in different layers of the SBM and SGMM to obtain the finaputput, and vice versa for the high log-likelihood ratios from
score for each trial. As shown in Fig. 4, the scores act as the §®me impostor trials. A higher verification performance can be

puts of the MLP. expected in the integrated system. Also, since the dimension of
The outputy; at thej-th node of the hidden layer is obtainednput is almost an order of magnitude lower than the dimension
by a sigmoid function of feature vector, it is easy to converge so the training is fast.

Different sizes of the hidden layer are tested in the experiments

1 .
j = 31) section.
R Cre=rwy G0
wherew,; ; andé; ; are the weights connecting the input and V. EXPERIMENTS

hidden layer. The elements jrare the separate scores from th@  patapase
different layers of the SGMM and SBM for each trial and act as

the inputs of the MLP. Similarly, the final outputis computed The SGMM-SBM were evaluated on the telephony speech

data (Switchboard I, phase 3) used in the NIST 1999 speaker

as
verification evaluation. Four hours of speech from 240 male and

o 1 (32) 240 female test segments in the NIST 1998 evaluation (Switch-
1+ e (@ 7-62) board Il, phase 2), with handsets balanced, are used for training

. ) ) the gender-dependent SBM. Each of 230 male target speakers
whereuj; andé, are the weights between the hidden layer anghy 309 female target speakers has two minutes of speech for
the single output neuron. This type of MLP H&d. — 1) input  y5ining. Among them 60 male and 60 female speakers are held
nodes with the background scores and target scores as sepy@{&or training the MLP. 29 241 gender-matched verification
inputs so that is related withs'by a functionf,(.) trials from the other 170 male and 249 female speakers are used
for the test. So there is no speaker overlap between the MLP
training data and test data. The duration of each test segment
Another kind of MLP is also considered in this paper. It employaries from a few seconds to one minute, with the majority of
L — 1 input nodes which use the — 1 log-likelihood ratios tests falling into a range between 15 to 45 s. The 13 626 verifi-
obtained from layer 2 to layet of the SGMM and the SBM, cation trials from 87 male and 114 female speakers in the NIST
with the background scores subtracted from the correspondit@7 evaluation (Switchboard Il, phase 1) are used as develop-

Z:f1(8t278b27"'78t1,78b[,)' (33)

target scores. In this casecan be represented by ment data for tuning the structure of the MLP. The ratios be-
tween target and impostor trials in both evaluations are roughly
2= f2 (5t = Sbar--- 80, = 50,) (34)  1:10. More details about the NIST evaluation can be found at
Then afinal decision can be made based on the value of the Mi30]-
output, z.

The MLP is trained with the widely used back-propagatioRt- Front End Processing
(BP) algorithm [29], a gradient-descent approach. With scoresThe frame rate is set to 16 ms. Nineteen-dimensional Mel-fre-
from some known target trials and impostor trials, the desiregiency cepstral coefficients (MFCC) are extracted from silence-
output is set to 1 for target trials and 0 for impostor trialgemoved and bandlimited data first. Then the channel effect is
Through such supervised training, the MLP increases the abildgmpensated by transforming the MFCCs with feature warping
of discriminating target and impostor speakers. During te$81], which recently was formulated within the framework of
when a similar set of scores are obtained from the SGMM-SB8&hort-time Gaussianization [32]. The 19 delta coefficients are
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calculated based on the warped MFCCs and appended to form a TABLE |
38-dimensional feature vector which is used in all the following VARABLE TREE STRUCTURESWITH KL-ML A PPROACH FORGMM-SBM

experiments. ny | ng | ng | F|EER(%) | min DCF(10~3)
C. Evaluation Measure 1024 1] 129 47.0
. . . . 2 1024 2 13.1 47.1
The evaluation of the speaker verification system is based on 1 s pe

Detection Error Tradeoff (DET) curves, which show the tradeoff 1024 - :

between false alarm (FA) and false rejection (FR) errors. In ad- 8 | 1024 6| 134 486
dition to the equal error rate (EER), there is also a detection cost 16 | 1024 9| 134 48.7
function (DCF) defined for the NIST evaluation [33] 32 | 1024 13| 138 48.7
4 32 | 1024 | 17 13.5 49.5

DCF = CpaPranPn + CrrPpRrTPr (35)

where Py and Py are the a priori probability of nontarget and _ .
target tests withPy = 0.99 and Pr = 0.01; the specific cost the four-layer KL-ML GMM-SBM achieves computational

factors areC’z4 = 1 andCrg = 10, which shifts the point of reduction by a factor of about 17, and causes only around 5%

interest toward low FA rates. relative degradation of verification performance in terms of
both EER (from 12.9% to 13.5%) and minimum DCF (from
D. Computational Reduction Factor 0.0470 to 0.0495). Thus, although the number of Gaussians

To represent the computational requirements of thomputed precisely is small, these Gaussians can still ap-
GMM-UBM relative to the SGMM-SBM. a computationalprOXimate the likelihood of test feature vectors when the tree
reduction factor is defined as ’ is constructed based on the acoustic similarities between all

M4+C Gaussian components.
=V iC (36) 2) Variable Distance Measures and Cluster Estima-
s+ 6 ) tions: For each tree structure mentioned above, the other
whereM, C'andC, are the numbers of Gaussian componenigee different combinations of distance measures and centroid
evaluated in the UBM, target GMM and SGMM, respectiveljastimations are also tested. The KL-KL approach constructs
M, is the average number of Gaussian likelihoods computediff, SBM based on the KL divergence and KL estimation. The
the SBM for each feature \_/ector. In all experimedttjs 1024 gH-ML and BH-BH approaches use Bhattacharyya distance
andC'is 5. C; can be obtained by and ML estimation or BH estimation, respectively. We also
C.,.=C+L-2 (37) compare these approaches with the reduced-size GMM-UBM.
) . To make the comparison fair, we keep the resolution of the
since we evaluate one node in each layer from layer 2 to |ayﬁ524-component GMM-UBM intact. For each test feature
L —1andC nodes in the leaf layer of the SGMM. The value Ofecior, a subset of Gaussian components is chosen randomly

M; is approximated by without any knowledge. The size of the subset is set as 512,
1 L L 256, 128, or 64, respectively. It is used A& to calculate
M = ?Zznl,t (38) the computational reduction factdr. The minimum DCFs
t=1 1=2 from multiple systems are shown in Fig. 5. The four different

wheren, ; is the number of nodes evaluated in layesf the GMM-SBMs show similar performances when the computa-
SBM for test feature vectar; during the scoring as describedtional reduction facto#’ is below 12. Wher¥' exceeds 12, the

before. KL-ML approach becomes slightly better than the other three.
) To achieve computational reduction similar to that of the four-
E. Experimental Results layer SBM, the size of the chosen subset of the GMM-UBM

1) Variable Tree Structures With KL-ML Approact8everal has to be reduced to 64. However, the DCF obtained from the
tree structures were tested first with KL-ML approach, i.erandomly chosen 64-component GMM-UBM increases by 40%
with KL divergence and ML estimation. The log-likelihoodrelatively compared to the 1024-component GMM-UBM. Fur-
ratio from the leaf layers only is used in the first three sectioisermore, compared to the 512-component GMM-UBM, the
of experimental results. It will be denoted as GMM-SBM tdour-layer KL-ML GMM-SBM achieves computational reduc-
distinguish it from the score fusion of SGMM-SBM discussetion of around 8.5 with almost no performance loss.
later. Only mean was adapted for the leaf layer of the SGMM. The EERs and minimum DCFs obtained from all four-layer
The relevance factorz, ,,, was set to 1 based on some initialGMM-SBMs using the KL-ML, KL-KL, BH-ML, and BH-BH
experiments. Five three-layer trees and one four-layer tree wapproaches are shown in Table 1. The four-layer KL-ML SBM
examined separately, with' increased as shown in Table l.has a relatively larger computational reduction factor and also a
ny_4 are the numbers of nodes in the second, third and foutibtter verification performance than the other three approaches
layer. The first row corresponds to the baseline GMM-UBNh terms of both EER and minimum DCF. The spread of the
with 1024 components. Each three-layer tree had 2, 4, 8, 16vatues off’ among the four different four-layer GMM-SBMs is
32 nodes in the second layer, and the four-layer tree had féarger than those among the three-layer trees. It is due to the
nodes in the second layer, with eight child nodes each, so thager differences between the cluster sizes in the four-layer
32 nodes exist in the third layer. Compared to the GMM-UBMrees constructed with different approaches than those in the



TABLE 1l
661 —— KL-ML GMM-SBM A COMPARISONWITH HASH GMM
-6~ KL-KL GMM-SBM
-*- BH-ML GMM-SBM
64| -8 BH-BH GMM-SBM System F | EER(%) | min DCF(10~3)
-4 GMM-UBM
62l KL-ML GMM-SBM | 17 | 135 49.5
T eo hash GMM (32-list) | 15 | 13.9 51.0
? sol
£ hash GMM (64-list) | 10 | 13.7 49.9
EE
I
g 561 TABLE IV
) MuLTI-LEVEL MAP ADAPTATION OF SBM
Ssal
8
8 52} Adapt p Adapt p,0 Adapt p,0,w
o Layer | EER(%) | DCF(10~3%) | EER(%) | DCF(10-3) | EER(%) | DCF(10~3)
2 24.1 98.1 22.9 94.8 22.9 96.0
s
3 19.5 72.6 20.8 74.8 20.8 77.9
461 ‘ . X 4 13.5 49.5 16.8 53.9 17.1 56.2
1 1 1 1 1 J
0 2 4 6 8 10 12 14 16 18

Computation reduction factor
Fig. 5. Comparison between different systems (e.g. KL-ML means KLhe corresponding layer in the SBM_are used for the deC|5|on_s.
divergence and ML estimation). As expected, the performance obtained from the lower layer is
better than its counterpart from the upper layers. For layer 2 with

only four nodes, i.e., four Gaussian components, adapting both

COMPARISON BETQEELEENMULWLE SYSTEMS mean and variance achieves better performance than the other
two adaptation approaches. For layer 3 and layer 4 with 32 and
System | F | EER(%) | min DOF(10~%) 1024 components respectively, the best performance is achieved
KL-ML SBM | 17| 135 49.5 by adapting mean only. This is consistent with the results of the
KL-KLSBM |14| 136 49.9 high-order GMM-UBM reportedin [2]. The reason why adapting
BH-ML SBM |15| 136 49.9 mean and variance works well for layer 2 is related to the small
BH-BHSBM | 16| 135 50.0 number of Gaussian components and relatively large amount of
6ioomp UBM | 15| 168 56.0 training data. The best ways for th_e adgptatlon in each layer will
128-comp UBM | 5 | 149 w51 be used for the score fl_JSIOﬂ (_jescrlbed_ in the next section.
5) Score Combination With MLP in SGMM-SBNRecall
256comp UBM | 4 | 138 5.8 that to combine the multiple scores from the four-layer SGMM
S12-comp UBM | 2 | 132 49.6 and SBM, we proposed two kinds of MLPs, both with one

hidden layer. The MLPs are trained with the held out speakers

three-layer trees. It was found that the variance of the cluster sfm@m the NIST 1999 evaluation as mentioned before. Different
from KL-ML approach is smaller than the others. This mearsszes of hidden layer were tested with the development data
the Gaussian components are distributed more evenly amongftoen the NIST 1997 evaluation by changing the number of
tree nodes, which may contribute to its highest performance.neurons from 10 to 60. As shown in Fig. 6, the optimal number

3) Comparison With Hash GMMThe four-layer KL-ML of neurons in the hidden layer is 30 for the three-input MLP
GMM-SBM was also compared with the hash GMM [13], aand 50 for the six-input MLP in terms of minimum DCF.
shown in Table Ill. Two 32-component hash GMMs were testéthe performance from the six-input MLP is better than that
with shortlist size 32 or 64, which achie¥é= 15 andF’ = 10, from the three-input one. This is not surprising since, with all
respectively. The GMM-SBM is slightly better than both hashackground scores and target scores as separate inputs, the
GMMs, achieving a larger computational reduction and slightMLP learns more from the training data, making it easier to
better performance. This is especially so in the area of low faldistinguish the target trials from the impostor trials.
alarm rates because the GMM-SBM has lower optimal DCF. With 30 hidden nodes in the three-input MLP and 50 hidden
Since the training of SBM is based on the UBM only, it is alsaodes in the six-input MLP, the results from the test data is
much faster than the generation of a hash GMM with all tr&own in Table V. They are also compared to the performances
shortlists, since the latter involves the training of a 32-compérom another two score fusion approaches, i.e., taking maximum
nent GMM with hours of speech data. or linearly combining the three likelihood ratios. Furthermore,

4) Multilevel MAP Adaptation of SBMAs described be- to make the comparison with the baseline fair, the target and
fore, the mean, variance and weight of each node in the SGMdckground scores from the GMM-UBM are used to act as two
can be obtained via multilevel MAP adaptation of the SBM. Imputs of a three-layer MLP with 10 nodes in the hidden layer.
this section, the effects of adapting the different sets of paranféie two-input MLP is trained with the same training data as
ters are evaluated. The results of adapting mean only, adaptingt for the three-input and six-input MLP. By taking advantage
mean and variance and adapting all three parameters are shofine same training data, the SGMM-SBM with the six-input
in Table IV. In current experiments, all relevance factors are 9dLP is better than that with the three-input MLP, same as the re-
to 1. The likelihood ratios between each layer of the SGMM aruililts from the development data. Its EER achieves 10% relative
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Fig. 6. Results of SGMM-SBM/MLP with development data. Fig. 7. Comparison of score fusion approaches.

TABLE V

mixture components in the UBM are clustered hierarchically
COMBINATION OF MULTIPLE SCORES

during the construction of a tree-structured SBM. An SGMM

System EER(%) | min DCF(10-3) is created through multilevel MAP adaptation for each target

SGMM-SBM/Max 21.9 83.9 speaker. In this way the acoustic space is partitioned into mul-
SGMM-SBM | Linear 135 9.1 tiple regions in different levels of resolution. The computational

SGMM.SBM,3-input MLP | 133 52 cost can be reduced significantly by scoring only a subset of the

Gaussian components during verification. Multiple background
scores and target scores obtained in different layers of the SBM
and the SGMM are combined via an MLP. The experiments on
the NIST speaker verification data show that a computational

reduction compared to that of the linear combination and sggduction of factor 17 can be achieved with a relative reduc-
relative reduction compared to that of the GMM-UBM. Alsotion of 5% in EER when using neural-network-based score
the DCF is decreased to almost the same value as that of §egPination. The SGMM-SBM also shows some advantages
GMM-UBM. over the recently proposed hash GMM. In the future other
The DET curves of the different systems are shown in Fig. €€ construction approaches may be investigated. Also, more
The SGMM-SBM/MLP represents the score fusion with the sixésearch is needed on the combination of scores from multiple
input MLP. layers in order to further improve verification performance.
Since the MLP based score fusion needs to be computed ofi}f €xample, other types of neural networks also could be the
once for each trial and the computational cost is negligible cofiiérnatives to MLP to take more advantage of the scores from
pared with that from the computation of Gaussian likelihooddifferent levels.
the impact on the computational reduction factor can be ignored Y€ @lso point out that although SGMM and MLP score com-
Thus, with neural score combination effected by the neural ng{nations were proposed and evaluated for speaker verification,
work, the SGMM-SBM not only achieves computational redudl€y ¢an also be applied in the text-independent speaker iden-
tion by a factor of 17 but also reduces the EER by 5% relffication to reduce computational cost. An SGMM can be cre-
tively, compared with the GMM-UBM. Both computational ef.ated for each enrolled speakers and a similar MLP can be de-
ficiency and high verification performance are achieved in thfjigned with all scores from different layers of the SGMMs as
integrated system. Utilizing a hierarchical structure to mod#]Put. The number of output neurons will be equal to the number
the acoustic space and a multilevel MAP adaptation to relftbSPeakers in the system, instead of just being one as used in
the target SGMM to the SBM makes the fast scoring feasibié!iS paper for speaker verification. Finally, we point out that
The MLP further discriminates the target and impostor scoré8Mbining multiple likelihoods from several levels of the hier-
by nonlinear combination of the multiple scores from the targ8fCNY using neural networks is also applicable to the high-speed
and background models to achieve high performance. speech recognition with tree-structured models.

SGMM-SBM/6-input-MLP 12.1 46.6

GMM-UBM/MLP 12.7 46.7
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