INTRODUCING FWKNOP

The FireWall KNock OPerator (fwknop, see
http://www.cipherdyne.org/fwknop) was
released as an open source project under the
GNU Public License (GPL) in June 2004. It was the first
port-knocking implementation to combine encrypted
port knocking with passive OS fingerprinting, making

it possible to allow only Linux systems to connect to your SSH daemon. (The
TCP stack of the port-knocking client system acts as an additional authen-
tication parameter.) fwknop’s port-knocking component is based on iptables
log messages, and it uses iptables as the default-drop packet filter.

In May 2005, I released the Single Packet Authorization mode for fwknop,
so fwknop became the first publicly available SPA software. As of this writing,
fwknop-1.0 is the latest available release, and the SPA method of authentica-
tion is the default, even though fwknop continues to support the old port-
knocking method. MadHat coined the term Single Packet Authorization at Black
Hat Briefings in July 2005. I submitted a similar proposal for presentation at
the same conference, but Single Packet Authorization rolls off the tongue a lot
easier than my title, which was Netfilter and Encrypted, Non-replayable, Spoofable,

232

NOTE

fwknop

Chapter 13

Single Packet Remote Administration. It is also worth noting that a protocol
implemented by the tumbler project (http://tumbler.sourceforge.net) is
similar to SPA in the sense that it only uses a single packet to transmit authen-
tication and authorization information; its payload is hashed instead of
encrypted, however, and this results in a significantly different architecture.

Jwknop really supports both authentication—the process of verifying the digital identity
of an entity that is communicating something—and authorization—the process of
trying to determine whether an entity has permission to perform an operation—of remote
clients that wish to access a service behind the default-drop packet filter. These two
processes are not the same, and both are important in their own right.

Installation

Installing fwknop begins with downloading the latest source tarball or RPM
from http://www.cipherdyne.org/fwknop/download. As usual, it is prudent
to verify the MDb5 sum; it is even better, from a security perspective, to use
GnuPG to see if the GnuPG signature checks out.! Once you’re sure that the
downloaded file is safe, you can proceed with the installation. Here’s how to
install the source tarball of fwknop version 1.0:

$ cd /usr/local/src

$ wget http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2

$ wget http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2.md5
$ md5sum -c fwknop-1.8.1.tar.bz2.md5

$ fwknop-1.8.1.tar.bz2: OK

$ wget http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2.asc
$ gpg --verify fwknop-1.8.1.tar.bz2.asc

gpg: Signature made Wed Jun 6 01:27:16 2007 EDT using DSA key ID A742839F
gpg: Good signature from "Michael Rash <mbr@cipherdyne.org>"

gpg: aka "Michael Rash <mbr@cipherdyne.com>"
$ tar xfj fwknop-1.8.1.tar.bz2

$ su -

Password:

cd /usr/local/src/fwknop-1.8.1
./install.pl

As with the installation of psad in Chapter 5, the install.pl script
will prompt you for several bits of information, such as the authorization
mode (i.e., whether you want to use the SPA mode or the legacy port-
knocking mode) and the interface on which you would like fwknop to
sniff packets.

You can install fwknop on a system that only supports sending SPA packets
as an SPA client, or on a system with full support for sending SPA packets as
well as sniffing them from the network (this is the default). A full installation
of fwknop results in the creation of several files and directories in the filesystem
in order to support normal operations, as follows.

! As mentioned in Chapter 5, my GnuPG key is available from http://www.cipherdyne.org/
public_key. It is necessary to import this key with gpg --import in order to verify the GnuPG
signature for each software distribution file at http://www.cipherdyne.org.

/usr/bin/fwknop This is the client program responsible for accept-
ing password input from the user; constructing SPA packets that conform
to the fwknop packet format; encrypting packet data with the Rijndael
symmetric cipher or by interfacing with GnuPG for asymmetric encryption;
and sending the encrypted SPA packet via UDP, TCP, or ICMP. By default,
fwknop sends SPA packets over UDP port 62201, but this can be changed
from the command line.

/usr/sbin/fwknopd This is the main daemon responsible for sniffing
and decrypting SPA packet data, guarding against replay attacks, decod-
ing the fwknop SPA packet format, verifying access rights, and reconfig-
uring the local iptables policy to grant temporary access to service (s)
requested within SPA packets.

/usr/bin/fwknop_serv This is a simplistic TCP server that is only used
if SPA packets are sent over the Tor anonymizing network (http://tor
.eff.org). Use of this server results in bidirectional communication, so

it technically breaks the usual unidirectional nature of the SPA protocol;

see “SPA over Tor” on page 254 for more information.

/usr/lib/fwknop The Perl modules fwknop uses are installed within this
directory in order to keep the system Perl library tree clean. Among the
installed modules are Net::Pcap, Net: : IPv4Addr, Net: :RawIP, IPTables: :Parse,
IPTables::ChainMgr, Unix::Syslog, GnuPG: : Interface, Crypt::CBC, and
Crypt::Rijndael. The install.pl script is careful to install only Perl mod-
ules that do not already exist within the system Perl library tree, in order
to minimize disk utilization. However, you can force install.pl to install all
required Perl modules by using the --force-mod-install command-line
argument. The IPTables::Parse and IPTables::ChainMgr modules are never
installed on systems running the ipfw firewall, or on client-only installs
of fwknop on Windows under Cygwin.

/etc/fwknop This is the main directory for fwknop daemon configura-
tion files such as fwknop.conf and access.conf. This directory is used by
fwknop daemons when running in server mode, and it is not needed to
generate an SPA packet in client mode.

/usr/sbin/knopmd This is a daemon used to parse iptables log mes-
sages out of the /var/lib/fwknop/fwknopfifo named pipe. This daemon
is only used if fwknop is being run in the legacy port-knocking mode.

/usr/sbin/knoptm This is a daemon that removes rule entries from
the iptables chains to which fwknop has added access rules for legitimate
SPA clients. This daemon is necessary because the main fwknopd daemon
is sniffing from a live interface and the OS does not schedule it to run
until a packet is received by the interface. The knoptm daemon is not
used if fwknopd is reading packet data from a PCAP file that is being
updated either by a separate sniffer process or by ulogd. In this case,
fwknopd is periodically scheduled to run, regardless of whether a packet
is received on an interface; hence, fwknopd can enforce timeouts against
iptables rules on its own.

/usr/sbin/knopwatchd This is a monitoring daemon that restarts
a daemon if it dies. However, fwknop is generally quite stable, so
knopwatchd does not usually have very much work to do; it exists

Introducing fwknop 233

234

merely as a precautionary measure, since running SPA implies that
nothing can access a protected service unless fwknopd is also running.

/etc/init.d/fwknop This is the initialization script for fwknop. It allows
the user to start fwknop in a manner that is consistent with most Linux
distributions—by executing /etc/init.d/fwknop start. Using the initscript
only makes sense in the context of starting fwknop in server mode.

fwknop Configuration

Chapter 13

In server mode, fwknop references two main configuration files, fwknop.conf
and access.conf, for configuration directives. Like the psad configuration files
(see Chapter b), within these files each line follows the simple key-value
convention for defining configuration variables. As usual, comment lines
begin with a hash mark (#). I'll present a selection of the more important
configuration variables from these files in the following sections.

/etc/fwknop /fwknop.conf

The fwknop.conf file defines critical configuration variables such as the
authentication mode, the firewall type, the interface to sniff packets from,
whether packets should be sniffed promiscuously (i.e., whether or not fwknop
processes Ethernet frames that are not destined for the MAC address of the
local interface), and the email address(es) to which alerts are sent.

AUTH_MODE

The AUTH_MODE variable tells the fwknop daemon how to collect packet data.
Several collection modes are supported, including sniffing packets from a live
interface via the Net: :Pcap Perl module, reading PCAP-formatted packets from
afile in the filesystem that is written by ulogd (see http://www.netfilter.org),
using a separate Ethernet sniffer such as tcpdump, or parsing iptables log mes-
sages from the file /var/log/fwknop/fwdata. Possible values for the AUTH_MODE
variable are PCAP, FILE_PCAP, ULOG_PCAP, and KNOCK; PCAP is the default.

AUTH_MODE PCAP;

PCAP_INTF

The PCAP_INTF variable defines the live interface the fwknop daemon uses to
monitor packets. This is only used if AUTH_MODE is set to PCAP; the default setting
is the etho interface.

PCAP_INTF etho;

PCAP_FILTER

A live interface may transmit or receive lots of packet data that is completely
unrelated to SPA traffic, and there is no need to force the fwknop daemon to
process it. The PCAP_FILTER variable allows you to restrict the types of packets
libpcap passes into fwknop based upon criteria such as network layer addresses

or transport layer port numbers. Because, by default, fwknop transfers SPA
packets over UDP port 62201, this variable is set as follows (this can be modi-
fied to acquire SPA packets over different ports and/or protocols).

PCAP_FILTER udp port 62201;

ENABLE_PCAP_PROMISC

When set to Y, this variable instructs the fwknop daemon to monitor all
Ethernet frames that are sent past the live packet capture interface (i.e., the
interface is operating in promiscuous mode). This is enabled by default when
AUTH_MODE is set to PCAP; however, if the interface where the fwknop daemon
is sniffing is active and has an IP address assigned—meaning SPA packets can
be sent directly to this interface—then this feature can be disabled as follows:

ENABLE_PCAP_PROMISC N;

FIREWALL_TYPE

The FIREWALL_TYPE variable tells fwknopd about the type of firewall that it is
responsible for reconfiguring after receiving a valid SPA packet. Supported
values are iptables (the default), and ipfw for FreeBSD and Mac OS X
systems.

FIREWALL_TYPE iptables;

PCAP_PKT_FILE

If AUTH_MODE is set to either FILE_PCAP or ULOG_PCAP, then the fwknop daemon
acquires packet data from a PCAP-formatted file within the filesystem. The
path to this file is defined by the PCAP_PKT_FILE variable and is set to the
following default:

PCAP_PKT FILE /var/log/sniff.pcap;

IPT_AUTO_CHAINI

The IPTables::ChainMgr Perl module is used by fwknop to add and remove
ACCEPT rules for legitimate SPA clients. The IPTables: :ChainMgr is also used
by psad, but instead of adding ACCEPT rules, psad adds DROP rules against IP
addresses that send malicious traffic. The default configuration for the
IPT_AUTO_CHAIN1 variable is to add ACCEPT rules into the custom iptables chain
FWKNOP_INPUT and jump packets into this chain from the built-in INPUT chain.?

IPT_AUTO CHAINL ACCEPT, src, filter, INPUT, 1, FWKNOP_INPUT, 1;

2 A detailed explanation of the IPT_AUTO_CHAIN{n} variables can be found in “Configura-
tion Variables” on page 135. The IPT_AUTO_CHAIN{n} variables provide an interface to the
IPTables::ChainMgr module, and this interface is used in both psad and fwknop.

Introducing fwknop 235

236

Chapter 13

ENABLE_MD5_PERSISTENCE

One of the most important features of the SPA protocol is the ability to
detect and ignore replay attacks. The ENABLE_MD5_PERSISTENCE variable controls
whether or not the fwknop daemon writes the MD5 sums of all successfully
decrypted SPA packets to disk. This allows fwknop to detect replay attacks
across restarts of fwknop and even across system reboots. This feature is
enabled by default, but can be disabled if you wish to verify that replay
detection functions correctly (requires sending a duplicate SPA packet
over the network to the SPA server).

ENABLE_MD5_PERSISTENCE Y;

MAX_SPA_PACKET_AGE

The MAX_SPA_PACKET_AGE variable defines the maximum age, in seconds, for
which the fwknop server will allow an SPA packet to be accepted. The default
is two minutes. This variable is only used if ENABLE_SPA_PACKET_AGING is enabled.

MAX_SPA PACKET AGE 120;

ENABLE_SPA_PACKET_AGING

By default, the fwknop daemon requires that an SPA packet sent from the
fwknop client is less than 120 seconds (two minutes) old, as defined by the
MAX_SPA_PACKET_AGE variable discussed above. The fwknop client includes a time-
stamp within each SPA packet (see “fwknop SPA Packet Format” on page 241),
which the fwknop server uses to determine the age of all SPA packets. This
feature requires loose time synchronization between the fwknop client and
server, but the robust Network Time Protocol (NTP) makes this easy to do.

If ENABLE_SPA PACKET AGING is disabled, an attacker inline with an SPA
packet could stop the packet from being forwarded, thus preventing the
fwknop server from seeing it and calculating its MD5 sum. Later, the attacker
could send the original SPA packet against its destination, and the fwknop
server would honor it. Further, if the fwknop -s command-line argument
was used to generate the original SPA packet, fwknop would honor the SPA
packet from whichever source IP address it came from (see the variable
REQUIRE_SOURCE_ADDRESS below), and the attacker would gain access through
the iptables policy.” Therefore, it is highly recommended that you leave this
feature enabled.

ENABLE_SPA_PACKET_AGING Y;

REQUIRE_SOURCE_ADDRESS

The REQUIRE_SOURCE_ADDRESS variable tells the fwknop server to require that
all SPA packets contain the IP address within the encrypted payload that is
to be granted access through iptables. With this feature enabled, the 0.0.0.0

3 This attack was called to my attention by Sebastien Jeanquier, and the result was the
ENABLE_SPA_PACKET_AGING feature (first available in the 0.9.9 release) to implement the time
window in which an SPA packet would be accepted by the fwknop server.

wildcard IP address placed within an SPA packet with the -s argument on the
fwknop client command line will not be accepted.

REQUIRE_SOURCE_ADDRESS Y;

EMAIL_ADDRESSES

The fwknop server sends email alerts under various circumstances, such as
when SPA packets are accepted and access to a service is granted, when access
is removed, and when a replay attack has been thwarted. Multiple email
addresses are supported as a comma-separated list, like so:

EMAIL_ADDRESSES root@localhost, mbr@cipherdyne.org;

GPG_DEFAULT_HOME_DIR

The GPG_DEFAULT_HOME_DIR variable specifies the path to the directory where
GnuPG keys are kept for digital signature verification and decryption of SPA
packets. The default is to use the .gnupg directory in root’s home directory.

GPG_DEFAULT_HOME_DIR /root/.gnupg;

ENABLE_TCP_SERVER

The ENABLE_TCP_SERVER variable controls whether or not fwknop binds a TCP
server to a port to accept SPA packet data. If you want to route SPA packets
over the Tor network, which only uses TCP for data transport, you must enable
this feature. (You’ll find more on this topic in “SPA over Tor” on page 254.)
This feature is disabled by default.

ENABLE_TCP_SERVER N;

TCPSERV_PORT

The TCPSERV_PORT variable specifies the port on which the fwknop_serv daemon
listens for TCP connections. This is only used by fwknop if ENABLE_TCP_SERVER
is enabled. The default is the following:

TCPSERV_PORT 62201;

/etc/fwknop /access.conf

The section on the fwknop.conf file gave lots of information about macro-level
configuration options for fwknop, but it left out a discussion of important
topics such as decryption passwords and authorization rights assigned to
users. I'll rectify this by presenting the fwknop access.conf file, which defines
all usernames, authorization rights, decryption keys, iptables rule time-outs,
and command channels that the fwknop server uses.

Introducing fwknop 237

238

Chapter 13

SOURCE

Authorization of multiple users from arbitrary IP addresses is supported
by fwknop; each user may use different encryption keys (and associated
encryption algorithms). SOURCE is the main partitioning variable that allows
fwknop to determine the access level of a valid SPA packet, and each group
of configuration variables within the access.conf file defines a complete SOURCE
access definition. The access.conf file supports multiple SOURCE access defini-
tions. The default value for the SOURCE variable instructs fwknop to validate an
SPA packet from any source IP address as shown below, but individual IP
addresses and CIDR networks are also supported.

SOURCE: ANY;

OPEN_PORTS

The OPEN_PORTS variable instructs fwknop to grant access to the specified ports
by reconfiguring the local iptables policy. Unless the PERMIT_CLIENT_PORTS
variable (see below) is set to Y, the client cannot gain access to any services
other than those listed by OPEN_PORTS. The following definition allows a valid
SPA packet to reconfigure iptables to allow access to TCP port 22 (SSHD).

OPEN_PORTS: tcp/22;

PERMIT_CLIENT_PORTS

When set to Y, this variable allows the fwknop client to dictate to the fwknop
server the set of traffic (i.e., ports and protocols) that will be allowed through
the iptables policy, instead of the fwknop server only reconfiguring iptables to
allow the traffic defined by the OPEN_PORTS variable. An SPA packet may contain
several ports that the client wishes to access (see “fwknop SPA Packet Format”
on page 241 for more information).

PERMIT_CLIENT_PORTS: Y;

ENABLE_CMD_EXEC

When enabled, this variable allows authorized SPA clients to have the fwknop
server execute a command on their behalf. This feature is controversial because
fwknop (as of the 1.0 release) executes these commands as root, although
the ability to run commands as less privileged users is in development. The
ENABLE_CMD_EXEC feature must be explicitly and deliberately enabled if you
want to use it.

ENABLE_CMD_EXEC: Y;

CMD_REGEX

The CMD_REGEX variable allows you to provide a regular expression that must
match a command supplied by an fwknop client before the fwknop server will

execute it. It only makes sense to use this variable in the context of setting
ENABLE_CMD_EXEC to Y. For example, to limit the commands the fwknop server
will execute on behalf of an fwknop client to variations on the mail command,
you could use the following:

CMD_REGEX: "mail\s+\-s\s+\"\w+\"\s+\w+\@\w+\.com;

DATA_COLLECT_MODE

The DATA_COLLECT_MODE variable accepts the same packet collection modes as
the AUTH_MODE variable in the fwknop.conf file. This allows each SOURCE access
definition in the access.conf file to be independently enabled or disabled,
depending on the value of the AUTH_MODE variable. Only those SOURCE access
definitions with a DATA_COLLECT_MODE value that matches the AUTH_MODE variable
are enabled. However, the DATA_COLLECT_MODE variable is optional, and if it is
left out of the access.conf file, the fwknop daemon assumes that it is set to PCAP,
the most common setting.

DATA_COLLECT_MODE: PCAP;

REQUIRE_USERNAME

The REQUIRE_USERNAME variable refers to the username of the user on a remote
system who executes the fwknop client to generate an SPA packet. This user-
name is included within all SPA packets (see “fwknop SPA Packet Format” on
page 241 for more information). The remote username allows fwknop to apply
authorization rules to incoming SPA packets. The REQUIRE_USERNAME variable
supports multiple usernames, which can be useful if there is a site or system-
wide encryption key for multiple users on the client side.

REQUIRE_USERNAME: mbr,mrash;

FW_ACCESS_TIMEOUT

The FW_ACCESS_TIMEOUT variable tells the fwknop server the number of seconds
for which any iptables ACCEPT rules should be instantiated within the FWKNOP_INPUT
chain, allowing access to the services requested by a valid SPA packet.

FW_ACCESS_TIMEOUT: 30;

KEY

The KEY variable defines the encryption key used for decrypting SPA packets
that have been encrypted with the Rijndael block cipher. It requires an argu-
ment that is at least eight characters long.

KEY: yourencryptkey;

Introducing fwknop 239

240

Chapter 13

GPG_DECRYPT_ID

The GPG_DECRYPT_ID variable specifies a unique identifier for the fwknop
server’s GnuPG public key, which is used by an fwknop client to encrypt the
SPA packet. This unique identifier can be obtained from the output of the
gpg --list-keys command and is normally a string of eight hex characters.

GPG_DECRYPT_ID: ABDC1234;

GPG_DECRYPT_PW

The GPG_DECRYPT_PW variable holds the decryption password for the fwknop
server’s GnuPG public key, which is used by an fwknop client for encryption.
Because this password is contained within a plaintext file, you should generate
anew GnuPG key to be used only as the fwknop server key, rather than using a
valuable GnuPG key that you might also use for other things, like confidential
email communications.

GPG_DECRYPT _PW: gpgdecryptionpw;

GPG_REMOTE_ID

The GPG_REMOTE_ID variable contains a unique identifier for the GnuPG key
that an fwknop client uses to digitally sign an SPA packet. This key needs
to be imported into the fwknop server key ring (see “SPA via Asymmetric
Encryption” on page 246).

GPG_REMOTE_ID: DEFG5678;

Example /etc/fwknop/access.conf File

Next, you'll put all of this information together and create a complete
access.conf file that you can use to protect your SSH server. (You’ll find
operational examples in “Deploying fwknop” on page 243.)

With your favorite editor, open the /etc/fwknop/access.conf file and
add the configuration directives listed below.

cat /etc/fwknop/access.conf
SOURCE: ANY;

OPEN_PORTS: tcp/22;
FW_ACCESS_TIMEOUT: 30;
REQUIRE_USERNAME: mbr;

KEY: mypassword;

GPG_DECRYPT _PW: gpgdecryptpassword;
GPG_HOME DIR: /root/.gnupg;
GPG_REMOTE_ID: 5678DEFG;
GPG_DECRYPT_ID: ABCD1234;

* fwknop can acquire secret key information from gpg-agent.

SOURCE: ANY means that the fwknop daemon will accept a valid SPA packet
from any source IP address. This is handy if you are on the road and cannot
predict which network your laptop or other system will be connected to.

OPEN_PORTS: tcp/22 means that the fwknop daemon will grant temporary
access through the local iptables firewall with an ACCEPT rule to the SSH port.
The ACCEPT rule is removed after 30 seconds, as specified by the FW_ACCESS_TIMEOUT
variable.

REQUIRE_USERNAME: mbr forces the remote username that runs the fwknop
client to be mbr. In this case, the fwknop daemon is configured to accept an SPA
packet that has been symmetrically encrypted with Rijndael (KEY: mypassword) or
asymmetrically encrypted (GPG_DECRYPT_PW: gpgdecryptpassword) with a GnuPG
key (usually with the Elgamal cipher). For SPA packets that are encrypted with
GnuPG, the fwknop daemon requires that the ID of the remote signing
key is 5678DEFG, and the ID of the local decryption key is ABCD1234—see the
GPG_REMOTE_ID and GPG_DECRYPT_ID variables, respectively.

fwknop SPA Packet Format

Every SPA packet is constructed according to a well-defined set of rules.
These rules allow the fwknop server to be confident about the type of access
that is being requested through the iptables firewall and who is requesting it.
After accepting user input from the fwknop client command line (see “SPA
via Symmetric Encryption” on page 244 and “SPA via Asymmetric Encryption”
on page 246), each SPA packet contains the following:

Random data (16 bytes) This provides enough random information to
ensure that every SPA packet fwknop generates is unique—at least, the
packets are unique to the degree of randomness that the Perl function
rand() is able to conjure with each invocation. (For Perl versions 5.004
and later, the srand() function is called implicitly at the first utilization
of the rand() function.)

Username This is the name of the user that is executing the fwknop
command, as returned by getlogin()—or getpwuid() if getlogin() fails.
The fwknop server uses this username to determine whether the remote
user is authorized to gain access to a service or run a command. (Note
that by the time the fwknop server sees the username, the SPA packet has
been successfully decrypted, which implies that the SPA packet has been
authenticated and the process of verifying authorization can begin.)

Timestamp This is the timestamp on the local system. The fwknop
server uses this value to determine whether the SPA packet falls within
the timed access window defined by the MAX_SPA_PACKET_AGE variable.

Software version This is the version of the fwknop client:

[mbr@spaclient ~]$ fwknop --Version
[+] fwknop v1.8.1 (file revision: 694)
by Michael Rash <mbr@cipherdyne.org>

Introducing fwknop 241

For example, the software version field in this case would contain the
value 1.0. The fwknop server uses this information to maintain backward
compatibility with older clients if the SPA packet format changes.

Mode This tells the fwknop server whether or not the SPA client wishes
to run a command. The default value is 1 for access mode; command
mode is denoted by 0.

Access directive This string tells the fwknop server which type of traffic
the client wishes to have accepted by the iptables firewall when the
policy is modified. The fwknop server parses this string for ports and
protocols to instruct iptables to accept, and the policy is reconfigured
accordingly. For example, if the client wishes to access both TCP port 22
and UDP port 1194 (which is used by OpenVPN), the string would be
client IP,tcp/22,udp/1194. The fwknop server controls whether or not
users can request to open specific ports. If only certain ports are allowed
to be opened, they must be defined within the access.conf file. (For
more information, see “OPEN_PORTS” and “PERMIT_CLIENT_PORTS”
on page 238.)

Command string This string is a full command that the fwknop client
would like to execute on the server; for example, /etc/init.d/apache2
restart orw |mail -s "w output" you@domain.com. This feature can open
the fwknop server to a security risk if it is not used wisely, and it is dis-
abled by default. (For more information, see “ENABLE_CMD_EXEC”
and “CMD_REGEX” on page 238.)

Packet MD5 sum This MD5 sum is calculated by the fwknop client and
is included within the SPA packet for an added degree of confidence
that the packet has not been altered while en route over the network.
Normally, the encryption algorithm itself provides adequate security,
because decrypting altered ciphertext does not normally result in valid
plaintext; however, including the MD5 sum allows the fwknop server to
independently agree that the data the client received is what the server
actually receives.

Server authentication method The fwknop 0.9.6 release added this field
to the packet format to allow the fwknop server to require an additional
authentication parameter in the SPA packet. For example, the server
may require the remote fwknop client to enter the local user’s crypt()
password. In this case, the authentication method string would be some-
thing like crypt,password.

Before SPA packets are encrypted and sent, by default, over UDP
port 62201, the fields discussed above are Base64-encoded and then concat-
enated with colons. This encoding ensures that the colon delimiters remain
unique, even across fields that may have contained colons before the encoding.
When you combine all these fields without Base64 encoding, you get some-
thing like this:

9562145998506823:mbr:1161142204:1.0:1:0.0.0.0,tcp/22:koEtBtDLOze22sNRyTASOA

242

Chapter 13

Once you Base64-encode the individual fields, you get this:

9562145998506823:bWJy:1161142204:1.0:1:MC4wLjAuMCx0Y3AvM]I=:koEtBtDLOze22sNRyfASoA

Finally, the packet data is encrypted either with the Rijndael symmetric
cipher or an asymmetric cipher supported by GnuPG (the Elgamal asym-
metric cipher is used by GnuPG by default). If you encrypt with Rijndael,
this is the result:

U2FsdGVkX180313n8BfSpgMewCaf8zC4CgLsS1f2STIQTNWxaC9Q3IPINSW91nSj5zr8Iuz7YyX10FzMu2FDZgbYAJUOXTE
e7WyzHIdY13ympcEPxpd/Qx5Wo3D8uS/AD8WyaV232srRCNWcsPUC9Q

Every SPA packet is encrypted and decrypted with either a symmetric-key
cipher or an asymmetric-key cipher. A symmetric-key cipher is an algorithm
that encrypts and decrypts data using the same key (hence the symmetric
designation). The Rijndael cipher, which has been selected as the Advanced
Encryption Standard (AES), is an important example of a symmetric-key
cipher. An asymmetric-key cipher, on the other hand, is an algorithm that
encrypts and decrypts data with a pair of keys: the public key, which is
published publicly, and the private key, which is kept secret. The two keys are
related via a mathematical conundrum, but they are not identical (hence the
asymmetric designation).

Deploying fwknop

Now that you have a good understanding of the configuration options
available in fwknop, it’s time for a few meaty operational examples. In each
case, the fwknop client is used to gain access to SSHD through a default-drop
iptables policy after reconfiguration by the fwknop server. The network dia-
gram in Figure 13-1 should help you to visualize these scenarios.

fwknop SPA/ iptables Firewall/
SSH Client fwknop SPA Server
204.23.X.X 71157 XX
(spaclient) (spaserver)

. SPA i
™., Packet SPA .~

SSH

Connection

Figure 13-1: An SPA network

In each scenario below, the fwknop client is executed on the system
labeled spaclient, and the SPA packet is sent to the system labeled spaserver.
The dotted line in Figure 13-1 represents the SPA packet, and the follow-on

Introducing fwknop 243

244

Chapter 13

SSH connection can only take place after the SPA packet has communicated
the desired access to the spaserver system and iptables can be reconfigured
to allow the access.

SPA via Symmetric Encryption

The fwknop client has a rich set of command-line options that allow you to
tell the fwknop server the exact access that you would like the iptables policy
to grant. If you use these command-line options, you must include the access
or command string, a source IP address resolution method, and the fwknop
server target IP address.

You can assume that the local iptables policy drops all packets in the
fwknop server’s INPUT chain that are destined for TCP port 22. Start by con-
figuring the fwknop.conf file with AUTH_MODE set to PCAP, make sure PCAP_INTF is
set to etho, and set the access.conf file to the following. (Note that there are
no GnuPG directives, such as GPG_REMOTE_ID or GPG_DECRYPT_PW, included in this
example.)

[root@spaserver ~]# cat /etc/fwknop/access.conf
SOURCE: ANY;

OPEN_PORTS: tcp/22;

REQUIRE_USERNAME: mbr;

KEY: myencryptkey;

FW_ACCESS_TIMEOUT: 30;

Use the commands below to @ start the fwknop server and @ verify that
it is running. By examining syslog messages, you’ll see that fwknopd is ready
to accept SPA packets from @ one SOURCE block (which is derived from within
the access.conf file listed above), and that @ an existing disk cache of SPA
packet MD5 sums is imported. Finally, make sure that @ SSHD is running on
the local system.

[root@spaserver ~]# /etc/init.d/fwknop start
Starting fwknop ... [ok]
[root@spaserver ~]# /etc/init.d/sshd status
* status: started
[root@spaserver ~]# tail /var/log/messages
Oct 17 23:59:53 spaserver fwknopd: starting fwknopd
Oct 17 23:59:53 spaserver fwknopd: flushing existing Netfilter IPT AUTO CHAIN
chains
Oct 17 23:59:53 spaserver fwknopd: imported access directives (1 SOURCE
definitions)
Oct 17 23:59:53 spaserver fwknopd: imported previous md5 sums from disk cache:
/var/log/fwknop/md5sums
[root@spaserver ~]# /etc/init.d/sshd status
* status: started

With the fwknop server up and running, you can test to see if SSHD is
accessible from the fwknop client system, and then use fwknop to gain
access to it. The -A tcp/22 command-line argument at @ tells the fwknop
server that the client wishes to access TCP port 22; the -R argument at @
instructs the fwknop client to automatically resolve the externally routable

address from which the SPA packet will originate (this is accomplished by
querying http://www.whatismyip.com); and the -k argument at ® tells the
fwknop client to send the SPA packet to the spaserver host.

mbr@spaclient ~]$ nc -v spaserver 22
mbr@spaclient ~]$ fwknop @-A tcp/22 ®-R ©-k spaserver
+] Starting fwknop in client mode.
+] Resolving hostname: spaserver
Resolving external IP via: http://www.whatismyip.com/
Got external address: 204.23.X.X

[
[
[
[

[+] Enter an encryption key. This key must match a key in the file
/etc/fwknop/access.conf on the remote system.

Encryption Key:

[+] Building encrypted Single Packet Authorization (SPA) message...
[+] Packet fields:

Random data: 2282553423001461

Username: mbx

Timestamp: 1161146338

Version: 1.0

Action: 1 (access mode)
Access: 204.23.X.X,tcp/22

MD5 sum: wviqr/qKuZdZ+xaqPO1KwA

[+] Sending 150 byte message to 71.157.X.X over udp/62201...
[mbr@spaclient ~]$ ssh spaserver

Password:

[mbr@spaserver ~1$

The last line in the listing above shows that you are now logged into the
spaserver host, verifying your access to SSHD. Below, the messages written to
syslog on the fwknop server tell you @ that fwknopd has successfully received
and decrypted the SPA packet sent by the fwknop client, and @ that an ACCEPT
rule has been added to allow TCP port 22 connections for the 204.23. X. X IP
address for 30 seconds. The ACCEPT rule is removed in ®. (Although not dis-
played here, emails are also sent to the addresses defined by the EMAIL_ADDRESSES
variable in fwknop.conf to inform you when fwknop grants and removes
access to an SPA client.)

Oct 18 00:38:58 spaserver fwknopd: received valid Rijndael encrypted packet
from: 204.23.X.X, remote user: mbr

Oct 18 00:38:58 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for
204.23.X.X -> tcp/22 (30 seconds)

Oct 18 00:39:29 spaserver knoptm: removed iptables FWKNOP_INPUT ACCEPT rule
for 204.23.X.X -> tcp/22, 30 second timeout exceeded

The fwknop server adds and deletes all SPA access rules within the
custom chain FWKNOP_INPUT instead of within any of the built-in chains, such
as INPUT or FORWARD. This strictly separates rules in an existing iptables policy

Introducing fwknop 245

from the rules it manipulates, which means that you don’t have to worry about
fwknop rules conflicting with any existing rules in your iptables policy. You
can execute the following command on the fwknop server before the 30-second
timer has expired to see the iptables rule that grants access to SSHD.

[root@spaserver ~]# fwknopd --fw-list
[+] Listing chains from IPT_AUTO_CHAIN keywords...

Chain FWKNOP_INPUT (1 references)
pkts bytes target prot opt in out source destination
11 812 ACCEPT tcp -- * * 204.23.X.X 0.0.0.0/0 tcp dpt:22

In this example, the fwknop server has reconfigured iptables to allow
access to SSHD for 30 seconds; then fwknopd will delete the ACCEPT rule
from the FWKNOP_INPUT chain. Although most SSH connections last longer
than 30 seconds, this isn’t a serious limitation as long as the Netfilter con-
nection tracking facilities are used, allowing the established TCP connection
to remain open between the client and the server:

[root@spaserver ~]# iptables -I INPUT 1 -m state --state ESTABLISHED,RELATED -j ACCEPT

246

Chapter 13

SPA via Asymmetric Encryption

The problem of key exchange is a central one in the field of cryptography
and the novel solution provided by public key cryptosystems distinguishes
itself. In contrast to symmetric ciphers where the key must be shared between
two parties in the clear over an insecure channel,” asymmetric ciphers rely
on a system whereby people actively publish the public portion of a public/
private key pair. For example, when person A encrypts data with person B’s
public key, person B, and only person B, can decrypt the ciphertext by combin-
ing the public and private key via an operation that breaks the lock on the
data. This lock is built from a mathematical puzzle that is computationally
expensive to solve without access to both the public and private keys.®

GnuPG Key Exchange for fwknop

In order to use GnuPG keys within fwknop, you must create and import
the server’s public key into the client’s key ring, and vice versa. Because the
decryption password for the client’s key is never stored in a file, it is safe to
use any GnuPG key with the fwknop client. However, for this discussion, I'll
generate new client and server keys and import them as follows (some of
the output has been removed for brevity).

® Transmitting keys over an insecure medium is an abstract notion that includes things like writing
the shared key down on a piece of paper and mailing it between the parties.

®The puzzle is usually derived from a classic computational problem such as integer factorization
of products of two large prime numbers, or computing discrete logarithms over a cyclic group.
The latter method is used by the Elgamal cryptosystem in GnuPG; see http://en.wikipedia.org/
wiki/ElGamal_encryption for a brief overview.

[mbr@spaclient ~]$ gpg --gen-key
gpg (GnuPG) 1.4.5; Copyright (C) 2006 Free Software Foundation, Inc.

Please select what kind of key you want:
(1) DSA and Elgamal (default)
(2) DSA (sign only)
(5) RSA (sign only)
Your selection? 1
DSA keypair will have 1024 bits.
ELG-E keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits
Please specify how long the key should be valid.
0 = key does not expire

Key is valid for? (0)
Key does not expire at all
Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs the user ID
from the Real Name, Comment and Email Address in this form:
"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Michael Rash
Email address: mbr@cipherdyne.org
Comment: Linux Firewalls fwknop client key
You selected this USER-ID:
"Michael Rash (Linux Firewalls fwknop client key) <mbr@cipherdyne.org>"

Change (N)ame, (C)omment, (E)mail or (0)kay/(Q)uit? O
You need a passphrase to protect your secret key.
Enter passphrase:

[mbr@spaclient ~]$ gpg --list-keys "fwknop client"

pub 1024D/AB743C36 2007-10-18

uid Michael Rash (Linux Firewalls fwknop _client key)
<mbr@cipherdyne.org>

sub 2048g/1035BC5C 2007-10-18

The length of ciphertext data associated with an SPA message that is
encrypted with a 4,096-bit Elgamal key is usually well over the 1,500-byte MTU
of Ethernet networks, so a key length of 2,048 bits is chosen (shown in bold
above).

Now we export the client public key to a file:

[mbr@spaclient ~]$ gpg -a --export-key "fwknop client" > fwknop client.asc

A similar process is performed on the fwknop server with the key genera-
tion and exporting commands duplicated on the server side:

[root@spaserver ~]# gpg --gen-key
[root@spaserver ~]# gpg --list-keys "fwknop server"
pub 1024D/25801B3A 2007-10-18

Introducing fwknop 247

248

Chapter 13

uid Michael Rash (Linux Firewalls fwknop_server key)
<mbr@cipherdyne.org>

sub 2048g/39E2FDC6 2007-10-18

[root@spaserver ~]# gpg -a --export "fwknop server" > fwknop server.asc

Finally, you need to transfer the public keys to each respective system,
import them, and sign them. The import step is required so that the server’s
public key is available on the client’s GnuPG key ring, and vice versa. The
signing step is necessary for fwknop to verify the identity of signed SPA packet
data. Even though I’ll transfer the public keys over scp, given the nature of
public-key cryptosystems, I could have published the keys on a web page for
all to see without any negative security impact. It is also important to note that
SSHD may not always be accessible (in fact, it will intentionally be firewalled
off by the fwknop setup), so other transfer mechanisms for the public keys
may sometimes be required. Here’s some abbreviated command output (the
scp transfers are in @ and @, and the import and signing commands begin
in®and @).

[mbr@spaclient ~]$ scp fwknop client.asc root@spaserver:

Password:

[mbr@spaclient ~]$ scp root@spaserver:fwknop server.asc .

Password:

[mbr@spaclient ~]$ gpg --import fwknop server.asc

gpg: key 25801B3A: public key "Michael Rash (Linux Firewalls fwknop server key)
<mbr@cipherdyne.org>" imported

gpg: Total number processed: 1

gpg: imported: 1

[mbr@spaclient ~]$ gpg --default-key "fwknop client" --sign-key "fwknop server"
[mbr@spaclient ~]$ ssh -1 root spaserver

Password:

[root@spaserver ~]# gpg --import fwknop client.asc

gpg: key AB743C36: public key "Michael Rash (Linux Firewalls fwknop client key)
<mbr@cipherdyne.org>" imported

gpg: Total number processed: 1

gpg: imported: 1

[root@spaserver ~]# gpg --default-key "fwknop server" --sign-key "fwknop client"

Running fwknop with GnuPG Keys

With the GnuPG keys imported and signed within both the fwknop client’s
and the server’s key rings, it is time to see fwknop in action with GnuPG. To
begin, the access.conf file on the fwknop server must contain the proper
GnuPG access definitions. The SOURCE block begins in @ and instructs fwknopd
to require that SPA packets are encrypted with the fwknop_server key and
signed with the fwknop_client key. In addition, iptables must be deployed to
shut down access to SSHD, as shown in @, and fwknop must be running, as
shown in ©.

[root@spaserver ~]# cat /etc/fwknop/access.conf
SOURCE: ANY;

OPEN_PORTS: tcp/22;

REQUIRE_USERNAME: mbr;

GPG_HOME DIR: /root/.gnupg;

GPG_DECRYPT_ID: fwknop_server;

GPG_DECRYPT_PW: GPGdecryptpw;

GPG_REMOTE_ID: fwknop_client;

FW_ACCESS_TIMEOUT: 30;

[root@spaserver ~]# iptables -I INPUT 1 -p tcp --dport 22 -j DROP
[root@spaserver ~]# iptables -I INPUT -m state --state ESTABLISHED,RELATED -j
ACCEPT

[root@spaserver ~]# /etc/init.d/fwknop start

Starting fwknop ... [ok]

Now, from the spaclient system, you can use Netcat to check that SSHD is
indeed unreachable, and use fwknop to gain access through iptables. Below,
the last line indicates that you have successfully logged into the spaserver
system.

[mbr@spaclient ~]$ nc -v spaserver 22

[mbr@spaclient ~]$ fwknop -A tcp/22 -gpg-recip "fwknop server" --gpg-sign
"fwknop_client" -R -k spaserver

[mbr@spaclient ~]$ ssh -1 root spaserver

Password:

[root@spaserver ~]#

As was the case when fwknop was instructed to use the Rijndael symmetric
cipher, the fwknop server writes several messages to syslog. This time, however,
there is new information indicating that the GnuPG-encrypted SPA message
was signed by @ the required key ID (defined by the GPG_REMOTE_ID variable
in access.conf). As usual, an iptables ACCEPT rule is ® added and © deleted
after 30 seconds.

Oct 18 15:48:07 spaserver fwknopd: received valid GnuPG encrypted packet
(signed with required key ID: @"fwknop client") from: 204.23.X.X, remote
user: mbr

Oct 18 15:48:07 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for
204.23.X.X -> tcp/22 (30 seconds)

Oct 18 15:48:08 spaserver knoptm: removed iptables FWKNOP_INPUT ACCEPT rule
for 204.23.X.X -> tcp/22, 30 second timeout exceeded

Detecting and Stopping a Replay Attack

Until now, you have seen fwknop put to legitimate uses in an effort to reduce
the attack surface of SSHD. When an SPA packet travels over an untrusted
network, anyone who can watch the packet on the wire can save it, analyze it,
and replay it. I have mentioned that the fwknop SPA implementation is well-
suited to thwarting replay attacks by comparing MD5 sums of incoming SPA
messages, but here’s a concrete example.

In Figure 13-2, an attacker is placed within the Internet cloud and monitors
an SPA packet in transit from the spaclient system to the spaserver system.
The attacker uses tcpdump to capture the SPA packet to a file (spa.pcap)
and examines it enough to see that the packet is encrypted gibberish. Then
the attacker replays the packet back over the network with tcpreplay, which is
depicted by the dotted line labeled Replayed SPA Packet in Figure 13-2.

Introducing fwknop 249

250

Chapter 13

fwknop SPA/ iptables Firewall/

SSH Client fwknop SPA Server
204.23.X.X 71.157. XX
(spaclient) (spaserver)
L]
— |
i S\ SPA 2
/

SSH

Connection

/

L

— '-—Reployed
[[I||] SPA Packet
A=\
Attacker
with Sniffer

Figure 13-2: An attacker monitors and replays an SPA packet

The command sequence to accomplish the SPA packet replay appears
below. First, the spaclient system sends a valid SPA packet to the spaserver
system at ®. The fwknop -L command-line argument allows fwknop to recall
the last command-line options that were used against the fwknop server host.
This is handy for simplifying the relatively complex fwknop command-line
interface. As the SPA packet is en route over the network, the attacker @ cap-
tures the packet with tcpdump, and © finds that it appears to be unintelligible.
The attacker hence deduces that this packet may be an SPA packet (particularly
since the packet is captured on the default port UDP 62201 that fwknop uses
to communicate). Another tip-off that the packet may be part of an SPA
scheme is that SSHD is not accessible from the attacker’s IP address, but an
SSH session may be established between the spaclient and spaserver. The
attacker then @ replays the SPA packet on the network against the spaserver
system in an effort to connect to the SSH server. The fwknop daemon run-
ning on spaserver has detected the replayed SPA packet as indicated by the
syslog message in @, and the iptables policy does not grant the attacker any
access. Although not displayed here, fwknop also sends an email alert to
highlight the fact that a previous SPA packet was replayed, since this is not
something that should happen under any reasonable circumstances.

[mbr@spaclient ~]$ fwknop -L spaserver
[+] Running with last command-line args: -A tcp/22 --gpg-recip fwknop_server
--gpg-sign fwknop_client -R -k spaserver
[+] Starting fwknop in client mode.
[+] Resolving hostname: spaserver
Resolving external IP via: http://www.whatismyip.com/
Got external address: 204.23.X.X

[+] Enter the GnuPG password for signing key: fwknop_client
GnuPG signing password:

[+] Building encrypted Single Packet Authorization (SPA) message...
[+] Packet fields:

Random data: 2018495891979939

Username: mbx

Timestamp: 1161229378

Version: 1.0

Action: 1 (access mode)
Access: 204.23.X.X,tcp/22

MD5 sum: 1P5311YNdwou/xA+361T3w

[+] Sending 1010 byte message to 71.157.X.X over udp/62201...

[root@attacker ~]# tcpdump -i etho -1 -nn -s 0 udp port 62201 -w spa.pcap

[root@attacker ~]# tcpdump -1 -nn -X -r spa.pcap | head

reading from file spa.pcap, link-type EN1OMB (Ethernet)

23:31:43.883144 IP 204.23.X.X.42245 > 71.157.X.X.62201: UDP, length 1010
0x0000: 4500 040e e5ff 4000 0000 0000 0000 0000 E..... @.@.co...
0x0010: 0000 0000 a505 f2f9 03fa 1d59 6851 494f ...-....... YhQIO
0x0020: 4177 7668 5165 7735 3476 3347 4541 662f AwvhQew54v3GEAf/
0x0030: 5754 6335 4279 736b 5544 5a76 5830 6873 WTc5ByskUDZvXOhs
0x0040: 6b59 5047 7774 6664 7349 5774 4948 3548 kYPGwtfdsIWtIHSH
0x0050: 5658 4c49 4731 656a 562b 3639 7057 6866 VXLIGlejV+69pWhf
0x0060: 4474 7443 7541 626b 4941 474c 3665 4c33 DttCuAbkIAGL6el3
0x0070: 426f 3632 5757 4231 3867 7975 7141 5a72 Bo62WWB18gyuqAZr
0x0080: 271 687a 3234 614e 7042 596a 4a2f 524d /qhz24aNpBYjJ/RM

[root@attacker ~]# tcpreplay -i etho spa.pcap

sending on: etho

1 packets (1052 bytes) sent in 0.15 seconds

6831169.0 bytes/sec 52.12 megabits/sec 6493 packets/sec

[root@attacker ~]# ssh -1 root 71.157.X.X

[root@spaserver ~]# tail /var/log/messages

Oct 18 23:32:50 spaserver fwknopd: attempted message replay from: 204.23.X.X

Spoofing the SPA Packet Source Address

The SPA protocol supports spoofed source IP addresses. This is a consequence
of two factors: the ability of the fwknop server to acquire the real source
address from within the SPA packet payload, and the fact that SPA packets
are sent over UDP with no expectation of return traffic.

fwknop uses the Perl Net::RawIP module to send SPA packets via a raw
socket, which allows you to set the source IP address to an arbitrary value
from the fwknop client command line. (This requires root access.) In Fig-
ure 13-3, the spaclient system sends the SPA packet, but the source IP address
in the IP header is crafted to make the packet appear to originate from the
207.132.X.X IP address. When fwknopd is running on the spaserver system,
it sniffs the SPA packet off the wire, but it grants access to SSHD from the
real fwknop client IP address 204.23.X. X instead of from the spoofed source
IP address, 207.132.X. X.

Introducing fwknop 251

252

Chapter 13

fwknop SPA/ iptables Firewall/

SSH Client fwknop SPA Server
204.23.X.X 71.157 XX
(spaclient) (spaserver)

SSH
Connection SSH p] \

Spoofed
" SPA Packet

Spoofed SPA
Packet Source Address
207.132.X.X

Figure 13-3: An SPA packet from a spoofed source address

Notice that the fwknop client command shown below has become more
complicated. This is to support spoofing the source IP address of the SPA
packet (as root), but to also build the encrypted payload using the fwknop_client
key, which is owned by the mbr user and located within the /home/mbr/
.gnupg directory.

[root@spaclient ~]# fwknop --Spoof-src 207.132.X.X -A tcp/22 --gpg-home-dir
/home/mbr/.gnupg --Spoof-user mbr --gpg-recip "fwknop_server" --gpg-sign
"fwknop_client" --quiet -R -k spaserver

GnuPG signing password:

The syslog messages below indicate that the fwknop server sniffed the
SPA packet, that it originates from @ the spoofed source address 207.132.X.X,
and that access is granted to the IP address contained within @ the encrypted
packet, 204.23. X.X.

[root@spaserver ~]# tail /var/log/messages

Oct 18 23:31:37 spaserver fwknopd: received valid GnuPG encrypted packet
(signed with required key ID: "fwknop_client") from: @207.132.X.X, remote
user: mbr

Oct 18 23:31:37 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for
©204.23.X.X -> tcp/22 (30 seconds)

fwknop OpenSSH Integration Patch

The fwknop project hopes to make the use of SPA as easy and user friendly as
possible. One thing that can help reduce the burden on the user is to integrate
seamlessly with a variety of client applications. Because the most common
application of SPA is to protect SSH communications, fwknop provides a patch
against the OpenSSH source code, which integrates the ability to execute the
fwknop client directly from the OpenSSH client command line. For this to work,

you must first apply the patch to the OpenSSH source code and recompile it.
The following illustrates how to accomplish this for the OpenSSH-4.3p2 release,
assuming the source code is located in /usr/local/src.

$ cd /usr/local/src/openssh-4.3p2

$ wget http://www.cipherdyne.org/LinuxFirewalls/ch13/openssh-4.3p2_SPA.patch
$ patch -p1 < openssh-4.3p2_SPA.patch

patching file config.h.in

patching file configure

patching file configure.ac

patching file ssh.c

$./configure --prefix --with-spa-mode && make
$ su -

Password:

cd /usr/local/src/openssh-4.3p2

make install

The most important thing to note about the commands above is that
the --with-spa-mode argument to the configure script ensures that the SPA
patch code is included within OpenSSH when it is compiled.

Now, with the modified SSH client installed, the fwknop client can be
invoked directly from the SSH command line, eliminating the need to run
fwknop manually before using SSH to make a connection. The patch adds
the new command-line argument -K fwknop args to SSH; this argument can
be used as follows to gain access to the spaserver system without separately
running the fwknop client.

[mbr@spaclient ~]$ ssh -K "--gpg-recip ABCD1234 --gpg-sign DEFG5678 -A tcp/22
-R -k spaserver" mbr@spaserver

GnuPG signing password:

Password:

Last login: Wed Oct 17 15:48:19 2007 from spaclient

[mbr@spaserver ~1$

Familiar log messages on the fwknop server side indicate receipt of the
SPA packet and confirm that the packet checks out (i.e., it was encrypted
with a required key ID and not replayed on the network).

Oct 17 15:53:39 spaserver fwknopd: received valid GnuPG encrypted packet
(signed with required key ID: A742839F) from: 204.23.X.X, remote user: mbr
Oct 17 15:53:39 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for
204.23.X.X -> tcp/22 (30 seconds)

The new SSH -K option passes its arguments down to the fwknop com-
mand line, so all functionality provided by fwknop is exposed to the SSH
command line. This includes the -L host argument, which, as mentioned
earlier in this chapter, allows a previously used fwknop command line to
be leveraged against the same host. Therefore, the following command
would work.

ssh -K "-L host" user@host

Introducing fwknop 253

254

NOTE

Chapter 13

SPA over Tor

The Onion Router ('Tor), is an anonymizing network composed of a globally
dispersed set of nodes called onion routers (see http://tor.eff.org). The
Tor network is designed to harden TCP-based services against a type of
Internet surveillance called traffic analysis. Traffic analysisis used to deter-
mine who is talking to whom over the Internet, and it is easily deployed by
any organization—particularly ISPs—with access to Internet traffic. Even
encrypted application traffic is subject to traffic analysis because IP addresses
are transmitted in the clear.

I am not considering IPSEC or other VPN protocols here, but even these protocols can
reveal information through traffic analysis as well.

The information that can be gleaned simply from watching two parties
communicate is often underestimated, and this has implications for every-
thing from keeping passwords secure to revealing the identities of supposedly
anonymous remailers.

Tor works by setting up a separate virtual circuit through the router
cloud for each TCP connection. A virtual circuit is established between an
entry router and a randomly selected exit router. Every circuit is unique, and
each hop within the circuit only knows the hop from which traffic originates
and the hop to which traffic must be sent. Further, traffic is encrypted when
it is within the router cloud.

The end result is that a client may communicate with a server over the
open Internet via this virtual circuit, and any third party that can monitor the
traffic going into or coming out of the router cloud will see IP addresses
talking to each other that seem totally unrelated.”

Is there a benefit to sending SPA packets over the Tor network? Decidedly
so, as it extends the service-cloaking nature of fwknop, making it more difficult
to determine that an SPA is being used at server locations.

But there is one catch: Tor uses TCP for transport. This implies that Tor
is incompatible with SPA, because SPA packets are transferred over UDP by
default. Even though fwknop supports sending SPA packets over blind TCP
ACK packets,® this alone is not enough to get an SPA packet to traverse the
Tor network. A virtual circuit is created through Tor only after the initial
TCP connection with the entry router has been fully established, implying
that bidirectional communication is required.

fwknop solves this problem by breaking the single packet nature of SPA
and sending SPA packets over fully established TCP connections with the
fwknop_serv daemon. This daemon spawns a minimal TCP server that runs
as user nobody, does a bind() and listen() on TCP port 62201, and then loops
over successive calls to accept(). With each accept(), a single recv() is made so

"There have been some attacks against Tor in order to reduce the strength of its resistance to
traffic analysis; see http://www.cl.cam.ac.uk/users/sjm217/papers/oakland05torta.pdf.

8 A blind TCP ACK (or other TCP packet with other flags set) is not part of an established TCP
connection.

that only a single TCP segment may be sent across by a client before the session
is shut down. This allows a client to send the SPA payload, but nothing else,
across the established TCP connection. Then, by using the socat program,
which functions as the socks4 proxy that Tor requires, together with the
--TCP-sock argument on the fwknop command line, the SPA packet can be
sent over the Tor network.

NOTE [or more information on socal, see hitp://www.dest-unreach.org/socat.

Concluding Thoughts

This chapter and Chapter 12 have illustrated powerful techniques in
computer security, showing how a server can be protected by a default-drop
packet filter, through which access is granted only to clients able to prove
their identities to a passively monitoring device. Port knocking was the first
technology to implement this idea, but due to some serious limitations in the
port-knocking architecture (including the difficulty of adequately addressing
the replay problem and the inability to transmit more than a few tens of bytes),
SPA has proved itself a more robust technology. The notion of an authoriz-
ing Ethernet sniffer combined with a default-drop packet filter is a relatively
new one in the computer security field, but it seems that new implementations
are springing up every day.”

Based on iptables, fwknop is an open source implementation of SPA that
provides a flexible mechanism for managing multiple users within the SPA
paradigm.

9 There is even a project to put HMAG-based SPA directly into iptables; see http://svn.berlios.de/
svnroot/repos/portknocko, and a discussion thread in the Netfilter development list archives,
http://lists.netfilter.org/pipermail /netfilter-devel /2006-October/thread.html.

Introducing fwknop 255

