
 AASRI Procedia 5 (2013) 147 – 155

2212-6716 © 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer review under responsibility of American Applied Science Research Institute
doi: 10.1016/j.aasri.2013.10.071

ScienceDirect

2013 AASRI Conference on Parallel and Distributed Computing Systems

Managing Data Replication and Placement Based on
Availability

Bakhta Meroufela*, Ghalem Belalemb
abakhtasba@gmail.com, bghalem1dz@univ-oran.dz

Department of Computer Science
Faculty of Faculty of Exact Sciences and Applied

University of Oran (Es Senia), Algeria

Abstract

The replication of data across multiple sites of data grid is an effective solution to achieve good performance in terms of
load balancing, response time, and improving data availability. To get the maximum gain that can make the data
replication, their placement strategy in the system is critical. This paper proposes a replication strategy based on
availability. It proposes also a placement and replacement strategies of replicas that ensures the desired availability with
the minimum replicas despite the presence of nodes failures and without overloading the system. The results of our
experimentations confirm that the proposed approach reaches its objectives.

© 2013 Published by Elsevier B.V.
Selection and/or peer review under responsibility of American Applied Science Research Institute

Keywords: replication; availability; data grid; similarity; placement; clusters.

1. Introduction

A data grid is a promising technology for distributed systems in general. It offers the availability of a large
amount of data [16], the problem in this type of grid environment is to ensure continuous availability of data
and respond to user requests as soon as possible, considering the geographical distribution of nodes and the

* Bakhta Meroufel.
E-mail address: bakhtasba@gmail.com.

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer review under responsibility of American Applied Science Research Institute

148 Bakhta Meroufel and Ghalem Belalem / AASRI Procedia 5 (2013) 147 – 155

popularity of data. The most often solution used to solve this problem is the replication [15]. Data replication
is a technique of creating identical copies of data (files, databases, etc.) in geographically distributed sites.
Each copy is called a replica [7]. The aim of our work is to ensure the desired availability with minimum
replicas without degrading system performances. This goal is possible with a placement strategy that takes
into account: the desired availability, the stability of nodes in the system and the failures.

We present the following contributions: Section 2 introduces some related researches on the replication
and placement of replicas in distributed systems and data grids. In Section 3, we define the used topology.
Section 4 presents our contribution, namely a proposal for an efficient dynamic replication approach which
takes into account the placement of replicas and failures in the system. Section 5 presents the experimental
results of our different simulations. The last section summarizes the paper and gives a short overview of
future works.

2. Related works

Various placement strategies have been proposed for replicas in grid that have a hierarchical topology. The
proposed model in [3] minimizes both the cost of communication (data transfer) and storage (cost of placing
replicas). The paper [5] uses two replica placement models. In the first, the authors use the reading/writing
costs as placement parameters. In the second, they also take into consideration the burden of storage required
by each node. In [11], the authors address the placement problem by ensuring load balancing between nodes
and number of replicas at the same time. In [5, 11], the number of nodes of the grid is fixed, which is not an
easy condition to meet in the grids where the nodes usually connect and disconnect unpredictably. In [8], the
replicas are created on the nodes that receive a large number of requests. They will then be deleted at the
request of the user or when the data are no longer used, or where storage space is full and replicas highest
priority must be created. The replica placement decision is based on a cost model. The authors of [6]
implement a replication approach in distributed networks. The network is modeled as colored nodes
structured in bi-directional graph. When creating replicas, nodes containing identical replicas have the same
color. The principle of the protocol [6] is that each node chooses a color graph to minimize the distance
between nodes of different colors and maximize the distance between nodes of the same color. The problem
with this approach that it considers only the case of one data for each node that is to say that the node can
have only one color.

3. System Model

Our used system model is a cluster federation with a single root to link between thus clusters. Several
systems have this topology such as Internet [10] and DIET [1]. Figure 1 shows an example of the system with
its components.

149 Bakhta Meroufel and Ghalem Belalem / AASRI Procedia 5 (2013) 147 – 155

Fig. 1. Used topology.

The root in the topology is used to bind the various clusters with each other. The Cluster-Head (CH),
which represents members of the cluster, has a routing table that manages the nodes within the cluster. It also
contains metadata and information about the replicas existing in the cluster. The other nodes are storage
elements; they contain one or more replicas of various data. In the system, nodes have predictive behavior [4]
and the fault detection is based on the messages of life [9]. If a failure is detected, the auto stabilization [2]
will be triggered to keep the topology connected, in other words.

4. Proposed approach

The present paper uses a new model of replication and placement of data. The principal objective of this
model is to minimize the number of replicas that ensures certain availability degree without degrading the
performance of the system. Our strategy takes into account the different and independent stability nodes in
contrast to most work in the literature [10] [13] [14] [17]. Each Cluster_Head contains a replication controller
to manage the replication and placement of replicas in the cluster.

4.1.Number of necessary replicas

To calculate the availability Availj of a data j in the system, we can use the formula proposed in [12]:

 (1)

Where
 j: data;
 Availj: the availability of the data j. 0 Availj 1;
 : the number of replicas of the data j. N;
 pi: the stability of the node i where the replica of data j is stored. 0 pi 1. In the rest of the paper, we will

make the difference between the stability of the node and the stability of its data, we note the first STAB and
the second p. So if data j is stored in node i then: .

In the case of a system where nodes have the same independent stability, then the formula (1) will be [9]:

 (2)

Cluster Head

Inter-Cluster link

Intra-Cluster link

Root

Normal node

Cluster 1

Cluster 2 Cluster n

150 Bakhta Meroufel and Ghalem Belalem / AASRI Procedia 5 (2013) 147 – 155

Formula (2) allows us to estimate the value of that satisfies the availability Avail for data j.

Many of works that exist in the literature [10], [14], [17] assume that the nodes have the same degree of
stability in order to use the formula 2. In the work [13], the author used nodes of different degrees of stability,
but he proposes to replicate the data in the nodes of the same class of stability. This proposal allows him to
use the formula 2 to calculate the number of replicas necessary to meet the desired availability. In our system,
nodes have different and independent stabilities; this is the case of existing systems. To calculate the number
of necessary replicas that ensure the desired degree of availability Avail, we have three possibilities:

 Optimistic: is the case where all the replicas of the data i are stored in the nodes of a good stability. So
the availability Availi will be assured with the minimum number of replicas. The Op is the number of
replicas necessary to assure the desired availability in the optimist case. It is calculated by the formula 2
where p is the best stability in the system.

 Pessimistic: is the case where all replicas of the data i are stored in the nodes of poor stability. So the
availability Availi will be assured with the maximum number of replicas. The Pes is the number of replicas
necessary to assure the desired availability in the pessimist case, it is calculated by the formula 2 where p is
the minimum stability in the system.

 Hybrid is the case where the replicas are stored in nodes of different degrees of stability. So the
availability Availi will be assured by crating Hyp replicas in the system. So Hyp will be in the range [Op,

Pes]. The number Hyp can not be calculated after specifying the placement of replicas because you have to
select the participating pi in the formula 1.

To ensure the degree of availability Availj to data j in a system that contains different nodes of different
stabilities, several solutions can be proposed:

 Create Pes replicas, that way we will be sure that availability is respected. But in an environment where
the creation and management of replicas are expensive, this solution will not be effective.

 Create Opt replicas, so the number of replicas is the minimum, but this solution requires that the number
of nodes that have the best stability is greater than or equal to Opt. This solution overloaded the most stable
nodes which increases the number of lost files in case of failure and also increases the recovery time.

Our approach consists of creating the minimum possible replicas (minimum then Pes) without
overloading the nodes of good stability and without degrading system performance. The principle of our
proposal is as follows:

Each Cluster-Head (CH) specifies a certain degree of availability AvailD to ensure in its cluster. The
AvailD is estimated using the history of data itself and its importance (popularity) in previous periods. After
the calculation of AvailD , the CH compare the actual availability (real availability) of the data AvailR in the
cluster with the desired availability AvailD .

 If AvailD AvailR: in this case the availability is satisfied. So the CH does nothing, it waits a while to
recheck the constraint.

 If AvailR < AvailD: in this case, the CH starts to create replicas and stored in a good placement as far as
availability desired AvailD will be satisfied.

We call the node that stores the replica: the best Target (see § Section 4.2).

4.2 Placement of replicas

The placement of replicas in the system plays an important role. In [17], the author shows that the
placement of several replicas of same data in the same node does not improve the availability or fault
tolerance. For this reason, it will be useful to store a single replica of the same data in a node. But what are the
good candidates to store the data?. In our system, nodes can predict failures. In case of suspecting the failure,

151 Bakhta Meroufel and Ghalem Belalem / AASRI Procedia 5 (2013) 147 – 155

the node places all its data in other node to assure the desired availability.
We used a new parameter called Degree of Responsibility (DR) that present the amount of bytes must be

replaced elsewhere in case of suspected failure of the node.

 (3)

Where
Nj: Node;
k: the number of data in the node Nj;
Dij: the data i stored in the node j.
A high degree of responsibility indicates that the node has a lot of bytes to place (move) in case of

suspected failure. In this case the recovery time of that node will be high and the fault will be accelerated. The
recovery time presents the needed time for moving data from the suspected node to other nodes. We suppose
that in the beginning the DR is 1 in all the nodes.

The candidate nodes also called best Targets are characterized by:
 Does not already have the data.
A sufficient available storage space to store data.
A good Availability Factor (AF).
The AF is calculated as follows:

 (4)

That is to say that the node with a good AF is the node that has good stability STAB, and low degree of
responsibility DR. The placement of replicas according to the strategy of availability factor AF guarantees a
good distribution of replicas on cluster’s nodes, but does not guarantee a good distribution on the network.
There may be cases where many replicas of the same data are stored in neighbors which increase the response
time for the other nodes. To avoid this problem, we added the last condition:

To increase the distance between identical replicas (replicas of the same data) [6], we proposed to use the
parameter of no-similarity with the following definition:

 (5)

n: node;
Di: data;
LLDn: List Local of Data in the node n;
LDNn: List of Data of all Neighbors of the node n.
So is the size of the list of different data between data list of the node n and the data list of its

neighbors. For example, if = 0 then all the data in the node n also exist in the 1-neighborhood. Our goal
is to distribute the load in the network. In a system where we do not know the frequency of access to the data
because:

The system is new or is in a new period.
The popularity of data is often changeable.
It more useful to maximize of each node without overloading it. For thus reasons we propose the

following algorithm that combines between the factor of availability AF and the no-similarity parameter : In
the first step of the algorithm 1(See Figure 2), the CH creates the list of candidates nodes that can store
replicas of that data, this list is noted Liste_cand. This candidates are nodes that do not have the data and have

152 Bakhta Meroufel and Ghalem Belalem / AASRI Procedia 5 (2013) 147 – 155

a sufficient storage space. The list Liste_cand will be ranked in descending order of AF *(1/) (see Algorithm
1: Line 01 and 02) that is to say that we support the node of good AF and lower (see Algorithm 1: Line 01
and 02). Just to avoid non-deterministic case if = 0, we classify the nodes in the list according to the
following parameter:

As long as the CH has not replicated the data, it verifies for each node in the list Liste_cand if adding the
replica increases the no-similarity of the node, if so then it stores this data in the node else it tests the next
node in the list Liste_cand (see Algorithm 1: line 04 to 11). In cases where the CH goes through a whole list
Liste_cand without replicating the data, so it chooses the best node in terms of AF (see Algorithm 1 line 12
and 15).

01: Create a list of candidate nodes Liste_cand
02: Sort the list Liste_cand in descending order of AF *(1/)).
03: Rep False
04: While (Liste_cand OU Rep=False)
/ / non similarity in cases where the node n stores the data
05: if > then / / the replica does not exist in 1-neighboring
06: Store replica of the data in the node n
07:
08: Rep True
09: Else go to the next node in the Liste_cand.
10: End If
11: End While
12: If Rep = false then
13: Store the replica in the first node n in Liste_cand
14:
15: End If.

Fig. 2. Placement algorithm

Figure 3 shows an example of a cluster consisting of five nodes. Assuming that CH wants to store a new
replica of the data M and that all nodes have the same AF. If Liste_Cand = {1, 4}, creating a replica of data M
in the node 1 does not increase its no-similarity (((1)) = ((1))) because this data already exists in its 1-
neighborhood. But the addition of this data in the node 4 increases its no-similarity (=2 > =1). So
the CH replicates this data in the node 4. In case where the CH add a new data S in the cluster, and it has as
candidates Liste_Cand = {1, 4}, so it choose the node 4 to store a replicas of the data because this node has
the minimum ().

153 Bakhta Meroufel and Ghalem Belalem / AASRI Procedia 5 (2013) 147 – 155

Fig.3. Example of no-similarity

Each node in the system stores the list of nodes requesting access to its data. If there is a failure suspicion,
the node moves its data to other nodes to keep the availability in the cluster. For each data, the node selects
from the list of nodes requesting this data the nearest node with a good AF. In this way the node minimizes
recovery time and keeps the distance between the different data replication.

5. Evaluation

In order to estimate the behavior of our approach called PD (Placement Dynamic), we used our developed
simulator FTSim [13]. The first experiment evaluates the response time using different number of nodes in the
system. The results are shown in Figure 4. We note that the response time in the proposed model becomes
smaller compared to the random approach (the replicas are placed randomly) if the number of nodes increases
in the system. In our approach PD we ensure a good distribution of replicas on the cluster which minimizes
the distance between the node and the target data. The second experiment (see Figure 5) calculates the number
of replicas in the system for the two placement approaches (PD/Random). We note that the number of replicas
of our approach is less than the random approach; despite the availability desired AvailD is the same in both
cases because our approach chooses as the placement of replicas the most stable nodes which minimize the
number of replicas necessary to ensure AvailD (see § Section 4.1).

Fig. 4. Number of nodes vs Response time. Fig. 5. AvailD vs Number of replicas.

{A,B,O}

{A}

{C,B,F}

{A,E}

{A,B,C,M}

2 3 4 A,B,C,M,E,F
1 {O,C,M,F,E} 5

1 A,B,O

1 5 A,B,O
4 {A} 1

4 O,B

1

2

3

4

5

50 60 70 80 90 99.99

PD

Random

Number of failures

R
ec

ov
er

y
tim

e(
s)

0.25

0.2

0.15

0.1

0.05

0

25

20

15

10

5

0

PD

Random

Pes

Opt

AvailD(%)

N
um

be
r

of
 r

ep
lic

as

154 Bakhta Meroufel and Ghalem Belalem / AASRI Procedia 5 (2013) 147 – 155

The
the s
reco
mini
node
avai
avai
beca

6. C

In
repli
syste
repli
node
will
by c
syste

Refe

[1] E
Inter
[2] E
17(1
[3] M
Inter
[4] G
on re

recovery time
sum of the rec

overy time inc
imizes this tim
es and also ch
lability. The
lability AvailD

ause the node

Conclusion &

n this paper, w
icas in the sy
em nodes. Th
ication and pla
es in cluster is
use Globus to

considering als
em jobs.

erences

E. Caron and F
rnational Jour
E.W. Dijstra. S
11):643–644,
M. Garmehi an
rnational Con
G-F. Hughes,
eliability, 51(3

Fig. 6. Number

e is a very im
covery time of
creases with
me because th
hooses the clo
results of ou

lD as possible
suspect to cra

perspectives

we proposed a
ystem in an e
he inconvenie
acement of re
s limited, the
o study the co
so the task rep

Frédéric Desp
rnal of High P
Self stabilizin
1974.
nd Y. Mansou
ference on Inf
J-F. Murray, a
3): 350–357, 2

r of failures vs Re

mportant param
f each node su
the increase

he replacemen
osest nodes fo
ur experimen
e (AvailR >= A
ash has no stra

a replication s
efficient mann
ent of this app
eplicas is achie
constraint of

omportment of
plication and p

prez. DIET A
erformance C

ng systems in s

uri. Optimal p
formation Tec
and K-K. Delg
2002.

ecovery time

meter in fault-t
uspect to crash
in the numbe

nt of data is d
or storing data
t shown in f
AvailD). But

ategy to choos

strategy based
ner that impr
proach it is s
eved by each c
scalability can
f our placeme
placement in

Scalable Tool
Computing Ap
spite of distrib

lacement repl
chnology (ICI
goda. Improv

tolerant system
h. The results
er of failures
done by the n
a. Failures ca
figure 7 prov
t the random
se the new pla

d on availabili
roves system
semi-centraliz
cluster-head i
n be met. In t

ent model in re
order to ensur

lbox to Build N
plications, 20

buted control.

lication on dat
T 2007), page
ed disk drive

Fig. 7. Num

ms. The recov
obtained (see
in the system

node itself wit
an cause loss
ve that our ap

approach inc
acement of its

ity, we also p
performance

zed, that is to
n each cluster

the following
eal grid. We w
re a fast and f

Network Enab
(3):335–352,
Communicati

ta grid environ
es 190–195, 20
failure warnin

mber of failures vs

very time of th
e Figure 6) sho
m, but our ap
thout the inter
of data or mi
pproach PD
crease the rec
data.

roposed the p
without over

 say that the
r. But since th
phase of the r
will also exten
fault tolerant e

bled Servers o
2006.
ions of the AC

nments. In 10t
007.
ngs. In IEEE T

s AvailR

he system is
ows that this
pproach PD
rvention CH
inimizing its
ensures the
covery time

placement of
rloading the
decision of

he number of
research, we
nd this work
execution of

on the Grid.

CM,

th

Transaction

155 Bakhta Meroufel and Ghalem Belalem / AASRI Procedia 5 (2013) 147 – 155

[5] K. Kalpakis, K. Dasgupta, and O.Wolfson. Optimal placement of replicas in trees with read, write, and
storage costs. IEEE Trans. Parallel Distributed System, 12(6): 628-637, 2001.
[6] B-J. Ko and D. Rubenstein. Distributed self-stabilizing placement of replicated resources in emerging
networks. IEEE/ACM Trans. Netw, 13(3) :476–487, 2005.
[7] H. Lamehamedi. Decentralized data management framework for data grids. PhD thesis, Faculty of
Rensselaer Polytechnic Institute, New- York, November 2005.
[8] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman. Data replication strategies in grid
environments. In Proceedings of the Fifth International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP’02), pages 378–383, 2002.
[9] M. Larrea, S. Arevalo, and A. Fernandez. Efficient algorithms to implement unreliable failure detectors in
partially synchronous system. Distributed computing, 6(9):34–48, 2001.
[10] M. Lei, S. Vrbsky, An on-line replication strategy to increase availability in Data Grids. Future
Generation Computer Systems, 24(2): 85-98, 2008.
[11] P. Liu and J-J. Wu. Optimal replica placement strategy for hierarchical data grid systems. In International
Symposium on Cluster, Cloud and Grid Computing (CCGRID 2006), pages 417–420, 2006.
[12] E.Marcus,H. Stern, Blueprints for High Availability, Second Edition, Wiley Publishing,2003.
[13] B. Meroufel, G. Belalem : Availability Management in Data Grid, Lecture Notes in Electrical
Engineering, 1, Volume 107, IT Convergence and Services, Part 1, Pages 43-53,2011.
[14] K. Ranganathan, A. Iamnitchi Improving data availability through dynamic model-driven replication in
large P2P communities. Proceeding CCGRID '02 Proceedings of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid IEEE Computer Society Washington, DC, USA, 2002.
[15] H. Stockinger, A. Samar, and B. Allcock. File and object replication in data grids. In IEEE Symposium
on High Performance and Distributed Computing (HPDC-10), 5(3): 305–314, 2001.
[16] S. Venugopal, R. Buyya, and R. Kotagiri. A taxonomy of data grids for distributed data
sharing,management and processing. In ACM computing survey, 38(1): 1–53, 2007.
[17] M. Zhong, K. Shen, J. Seiferas Replication Degree Customization for High Availability, Newsletter
Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems, USA. May 2008.

