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Abstract

Periodicy detection in time series data is a challenging problem of great importance in many appli-

cations. Most previous work focused on mining synchronous periodic patterns and did not recognize

misaligned presence of a pattern due to the intervention of random noise. In this paper, we propose a

more flexible model of asynchronous periodic pattern that may be present only within a subsequence

and whose occurrences may be shifted due to disturbance. Twoparametersmin rep andmax dis
are employed to specify the minimum number of repetitions that is required within each segment of

non-disrupted pattern occurrences and the maximum alloweddisturbance between any two successive

valid segments. Upon satisfying these two requirements, the longest valid subsequence of a pattern is

returned. A two phase algorithm is devised to first generate potential periods by distance-based prun-

ing followed by an iterative procedure to derive and validate candidate patterns and locate the longest

valid subsequence. We also show that this algorithm can not only provide linear time complexity with

respect to the length of the sequence but also achieve space efficiency.
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1 Introduction

Periodicy detection on time series data is a challenging problem of great importance in many real applica-

tions. Most previous research in this area assumed that the disturbance within a series of repetitions of a

pattern, if any, would not result in the loss of synchronization of subsequent occurrences of the pattern with

previous occurrences [12] [13]. For example, “Joe Smith reads newspaper every morning” is a periodic

pattern. Even though Joe might not read newspaper in the morning occasionally, this disturbance will not

affect the fact that Joe reads newspaper in the morning of thesubsequent days. In other words, disturbance

is allowed only in terms of “missing occurrences” but not as general as any “insertion of random noise

events”. However, this assumption is often too restrictivesince we may fail to detect some interesting

pattern if some of its occurrences is misaligned due to inserted noise events. Consider the application

of inventory replenishment. The history of inventory refill orders can be regarded as a symbol sequence.

Assume that the time between two replenishments of cold medicine is a month normally. The refill order

is filed at the beginning of each month before a major outbreakof flu which in turn causes an additional

refill at the 3rd week. Afterwards, even though the replenishment frequency is back to once each month,

the refill time shifts to the 3rd week of a month (not the beginning of the month any longer). Therefore, it

would be desirable if the pattern can still be recognized when the disturbance is within some reasonable

threshold.

In addition, the system behavior may change over time. Some pattern may not be present all the time

(but rather within some time interval). Therefore, in this paper we aim at mining periodic patterns that

are significant within a subsequence of symbols which may contain disturbance of length up to a certain

threshold. Two parameters, namelymin rep andmaxdis, are employed to qualify valid patterns and the

symbol subsequence containing it, where this subsequence in turn can be viewed as a list ofvalid seg-

ments of perfect repetitions interleaved by disturbance. Each valid segment is required to be of at leastmin rep contiguous repetitions of the pattern and the length of eachpiece of disturbance is allowed only

up tomax dis. The intuition behind this is that a pattern needs to repeat itself at least a certain number

of times to demonstrate its significance and periodicy. On the other hand, the disturbance between two

valid segments has to be within some reasonable bound. Otherwise, it would be more appropriate to treat
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such disturbance as a signal of “change of system behavior” instead of random noise injected into some

persistent behavior. The parametermax dis acts as the boundary to separate these two phenomena. Ob-

viously, the appropriate values of these two parameters areapplication dependent and need to be specified

by the user. For patterns satisfying these two requirements, our model will return the subsequence with

the maximum overall repetitions. Note that, due to the presence of disturbance, some subsequent valid

segment may not be well synchronized with the previous ones.(Some position shifting occurs.) This in

turn would impose a great challenge in the mining process.

Similar to [13], we allow a pattern to be partially filled to enable a more flexible model. For instance,

(cold medi, *, *, *) is a partial monthly pattern showing that the cold medicine is reordered on the first

week of each month while the replenishment orders in the other three weeks do not have strong regularity.

However, since we also allow the shifted occurrence of a valid segment, this flexible model poses a difficult

problem to be solved. For a give patternP , its associated valid segments may overlap. In order to find

the valid subsequence with the most repetitions forP , we have to decide which valid segment and more

specifically which portion of a valid segment should be selected. While it is relatively easy to find the set

of valid segments for a given pattern, substantial difficulties lie on how to assemble these valid segments

to form the longest valid subsequence. As shown in Figure 1, with min rep = 3, S1, S2, andS3 are three

valid segments of the patternP = (d1; �; �). If we setmax dis = 3, thenX1 is the longest subsequence

beforeS3 is considered, which in turn makesX2 the longest one. If we only look at the symbol sequence

up to positionj without looking ahead in the sequence, it is very difficult todetermine whether we should

switch toS2 to becomeX1 or continue onS1.
2 d13dd1 d2d1 d2 3d d1 3d d1 d2 d2d2 d1 d1 3d d1 3d d1 3d 3d d1 3d d2d2d1
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Figure 1: Example of Symbol Sequence
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This indicates that we may need to track multiple ongoing subsequences simultaneously. Since the

number of different assemblages (of valid segments) grows exponentially with increasing period length,

the process to mine the longest subsequence becomes a daunting task (even for a very simple pattern such

as(d1; �; �)). To solve this problem, for a given pattern, an efficient algorithm is developed to identify

subsequences that may be extended to become the longest one and organize them in such a way that the

longest valid subsequence can be identified by a single scan of the input sequence and at any time only a

small portion of all extendible subsequences needs to be examined.

Another innovation of our mining algorithm is that it can discover all periodic patterns regardless of

the period length. Most previous research in this area focused on patterns for some pre-specified period

length [12] [13] [21] or some pre-defined calendar [24]. Unfortunately, in practice, the period is not

always available a priori (It is also part of what we want to mine out from the data). The stock of different

merchandises may be replenished at different frequencies (which may be unknown ahead of time1 and

may also varies from time to time). A period may span over thousands of symbols in a long time series

data or just a few symbols. We first introduce a distance-based pruning mechanism to discover all possible

periods and the set of symbols that are likely to appear in some pattern of each possible period. In order to

find the longest valid subsequence for all possible patterns, we employ a level-wise approach. The Apriori

property also holds on patterns of the same period. That is, avalid segment of a pattern is also a valid

segment of any pattern with fewer symbols specified in the pattern. For example, a valid segment for(d1; d2; �) will also be one for(d1; �; �). Then, for each likely period, all valid patterns with theirlongest

supporting subsequences can be mined via an iterative process.

In summary, we claim the following contributions in this paper.� A pattern can be partially specified, e.g.,(d; �; �).� A more flexible model of asynchronous periodic patterns is proposed to allow mining of all patterns

– whose periods can cover a wide range and are not known a priori;

– that are present within only a subsequence;1The replenishment order of a merchandise may not be prescheduled but rather be filed whenever the inventory is low.
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– whose occurrences may be misaligned due to the insertion of some random disturbance.� A two phase algorithm is devised to first generate potential periods by distance-based pruning fol-

lowed by an iterative procedure to derive and validate candidate patterns and locate the longest valid

subsequence containing each pattern.� A segment-based approach is devised to discover the longestvalid subsequence for a given pattern

via a single scan of the input sequence.� We also analyze the time and space complexity and prove the correctness of the proposed algorithm.

The remainder of this paper is organized as follows. Section2 gives a brief overview of recent related

research to our problem. The general model is presented in Section 3. Section 4 outlines the three major

steps of our algorithm. The algorithms of distance-based pruning, the singular pattern verification, and the

complex pattern verification are elaborated in Sections 5, 6, 7, respectively. We discuss some limitations

and extensions of our algorithm in Section 8. Section 9 presents experimental results. The conclusion is

drawn in Section 10.

2 Related Work

Discovering sequential patterns was first introduced in [2]and [25]. The input data is a set of sequences,

called data-sequences. Each data-sequence is a list of transactions. Typically there is a transaction time

associated with each transaction. A sequential pattern also consists of transactions, i.e., sets of items. The

problem is to find all sequential patterns with a user-specified minimum support, where the support of a

sequential pattern is the percentage of data-sequences that contain the pattern. The surprising sequential

pattern discovery is proposed in [28]. In this work, the authors search for the patterns whose occurrence is

significantly greater than the expectation. The information gain is used to measure the degree of surprise

(or significance) of a pattern.

Full cyclic pattern was studied in [21]. The input data to [21] is a set of transactions, each of which

consists of a set of items. In addition, each transaction is tagged with an execution time. The goal is to
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find association rules that repeat itself throughout the input data. Han et. al. [13] presented algorithms

for efficiently mining partial periodic patterns by exploring some interesting properties related to partial

periodicity such as the Apriori Property and the max-subpattern hit set property. However, the proposed

solution requires that the predefined period and the synchronous pattern.

In [7], Bettini et. al. proposed an algorithm to discover temporal patterns in time sequences. The

basic components of the algorithm includes timed automata with granularities (TAGs) and a number of

heuristics. The TAGs are for testing whether a specific temporal pattern, called a candidate complex

symbol type, appears frequently in a time sequence. In addition, heuristics are used to reduce the number

of candidate symbol types. These heuristics exploit the information provided by explicit and implicit

temporal constraints with granularity in the given symbol structure.

The inclusion of a user defined calendar is studied in [24]. A user explicitly defines a calendar and

interesting patterns are discovered based on the calendar.For example, if a user defines temporal subse-

quence to start on the days when the US government announces the unemployment rate as this calendar

and the calendar is applied to the stock prices in New York Stock Exchange, then some interesting patterns

can be discovered relating the reaction of stock prices to these announcements.

3 General Model

In this section, we formally define the model that we are investigating in this paper. Let= = fd1; d2; : : : ; g
be a set of literals andD be a sequence of literals in=. We first introduce some notations that would

facilitate the discussion in the remainder of the paper.

Definition 3.1 A pattern with period l is a sequence ofl symbols(p1; p2; : : : ; pl), wherep1 2 = and the

others are either a symbol in= or *, i.e., pj 2 = [ � (2 � j � l).
Since a pattern can start anywhere in a sequence, we only needto consider patterns that start with a non

“*” symbol. Here,� is introduced to allow partial periodicy. In particular, weuse� to denote the “don’t

care” position(s) in a pattern [13]. A patternP is called ai-pattern if exactly i positions inP are symbols

from=. (The rest of the positions are filled by *.) For example,(d1; d2; �) is a 2-pattern of period 3.
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Definition 3.2 For two patternsP = (p1; p2; : : : ; pl) andP 0 = (p01; p02; : : : ; p0l) with the same periodl,P 0 is a specializationof P (i.e.,P is a generalizationof P 0) iff, for each positionj(1 � j � l), eitherpj = p0j or pj = � is true.

For example, pattern(d1; d2; �) is considered as a specialization of(d1; �; �) and a generalization of(d1; d2; d3).
Definition 3.3 Given a patternP = (p1; p2; : : : ; pl) with period l and a sequence ofl literals D0 =d1; d2; : : : ; dl, we say thatP matchesD0 (or D0 supports P ) iff, for each positionj(1 � j � l), eitherpj = � or pj = dj is true.D0 is also called amatch ofP .

In general, given a sequence of symbols and a patternP , multiple matches ofP may exist. In Fig-

ure 2(a),D1, D2, : : :, D7 are seven matches of(d1; �; d2). We say that two matches of the same period are

overlapped iff they share some common subsequence, and aredisjoint otherwise. For instance,D1 andD3 are disjoint whileD1 andD2 are overlapped and their common subsequence is indicated bythe shaded

area in Figure 2(a).

D3

D1

D2

d1 d2 d1 d3 d2 d4 d1 d4 d3d1 d2 d1 d2

D4

d1 d2 d5

D5

d2d4 d1 d5 d3d2d1

D6 D7

d1 d3 d2 d4d1 d2d1 d2 d2

(d) valid subsequence of (d1, *, d2)

(b) segments of (d1, *, d2)

(a) matches of (d1, *, d2)

(c) valid segments of (d1, *, d2)

S1 S2 S3
disturbance

d1 d1 d3d1 d2 d5d4 d2d4 d1 d5 d3d1 d2d1 d2 d2 d1 d3 d2 d1 d4 d2

d1 d1 d4 d3d1 d2 d5 d1 d5 d3d2d1 d4 d2

d1 d1 d1d4 d2d4 d1 d5 d3d1d1 d2 d2 d1 d3 d2 d1 d4 d2 d1 d2d5 d2

valid subsequence

Figure 2: Example of matches and segments of(d1; �; d2)
Definition 3.4 Given a patternP with periodl and a sequence of symbolsD, a list ofk (k > 0) disjoint
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matches ofP in D is called asegmentwith respect toP iff they form a contiguous subsequence ofD. k
is referred to as thenumber of repetitions of this segment.

SegmentsD2, D3, andD4 form a contiguous subsequence as shown in Figure 2(b). Therefore, the

subsequenced1; d2; d2, d1; d3; d2, d1; d4; d2 is a segment with respect to the pattern(d1; �; d2). Note that,

by definition, each match of a patternP itself is also a segment with respect toP .

Definition 3.5 A segmentS with respect to a patternP is avalid segmentiff the number of repetitions ofS (with respect toP ) is at least the required minimum repetitions (i.e.,min rep).

If the value ofmin rep is set to2, then both segmentsS1 andS3 qualify as valid segments as illustrated

by shaded area in Figure 2(c).S2 is not a valid segment since it only contains one match of(d1; �; d2). In

general, given a patternP , any sequence of symbol can be viewed as a list of disjoint valid segments (with

respect toP ) interleaved by disturbance. For example, the subsequenceenclosed in the dashed contour in

Figure 2(c) is treated as disturbance between two valid segmentsS1 andS3.
Definition 3.6 Given a sequenceD and a patternP , a valid subsequencein D is a set of non-overlap

valid segments where the distance between any two successive valid segments does not exceed the pa-

rametermax dis. Theoverall number of repetitions of a valid subsequence is equal to the sum of the

repetitions of its valid segments. A valid subsequence withthe most overall repetitions ofP is called its

longest valid subsequence.

Definition 3.7 For a sequence of symbolsD, if there exists some valid subsequence with respect to a

pattern, then this pattern is called avalid pattern .

It follows from the definition that any valid segment itself is also a valid subsequence. If we setmax dis = 4, even thoughS1 andS3 in Figure 2(c) are individually valid subsequences, there does not

exist a valid subsequence containing both of them due to the violation of the maximum allowed disturbance

between them. In contrast, the subsequence enclosed by dashed line in Figure 2(d) is a valid subsequence

whose overall number of repetitions is 6.
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For a given sequence of literalsD, the parametersmin rep andmax dis, and the maximum period

lengthLmax, we want to find the valid subsequence that has the most overall repetitions for each valid

pattern whose period length does not exceedLmax.

4 Algorithm Overview

In this section, we outline strategies to tackle the problemof mining subsequences with most overall

repetitions for all possible patterns.

1. Distance-based Pruning.For each symbold, we examine the distance between any two occurrences

of d. LetDCd;l be the number of times when such distance is exactlyl. For each periodl, the set of

symbols whoseDCd;l counters are at leastmin rep are retained for the next step.

2. Single Pattern Verification. For each potential periodl and each symbold that passed the previous

step, a candidate 1-pattern(d1; d2; : : : ; dl) is formed by assigningd1 = d andd2 = : : : = dl = �. We

validate all candidate patterns(d; �; : : : ; �) via a single scan of the sequence. Note that any single

pattern of format(�; : : : ; d; �; : : : ; �) is essentially equivalent to the pattern(d; �; : : : ; �) (of the same

period) with a shifted starting position in the sequence. A segment-based approach is developed so

that a linear scan of the input sequence is sufficient to locate the longest valid subsequence for a

given pattern.

3. Complex Pattern Verification. An iterative process is carried out where at theith iteration, the

candidatei-patterns are first generated from the set of valid(i� 1)-patterns, and are then validated

via a scan of the data sequence.

We now elaborate each step in following sections.

5 Distance-based Pruning of Candidate Patterns

Since there are a huge number of potential patterns,O(j=jLmax), a pruning method is needed to reduce the

number of candidates. The pruning method is motivated by ourobservation that if a symbold participates
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in some valid pattern of periodl, there should be at leastmin rep times that the distance between two

occurrences ofd is exactlyl (in order to form a valid segment). So the proposed distance-based pruning

method makes one pass over the data sequence to discover all possible periods and the set of symbols that

are likely to appear in some pattern of each possible period.For each symbold and periodl, the number

of times when the distance between two occurrences of d in thesequence isl is collected.

To perform the distance-based pruning, when scanning through the sequence, we need to maintain

a moving window of the lastLmax symbols scanned. For the next symbol, sayd, we compare it with

each of the symbol in the moving window. If a match occurs at the jth position, the count for period(Lmax � j + 1) of symbold (denoted asDCd;Lmax�j+1) is incremented by 1. For example, in Figure 2(a),

the thirdd1 in the fifth position will contribute to bothDd1;3 andDd1;4. Due to the generality of our model,

for each occurrence of a symbold, we need to track its distance to all of its previous occurrences within

the moving window. Our model does not only allow partially specified patterns such as(d; �; �) whered
can also occur in the “*” position, but also recognizes patterns with repetition of the same symbol such

as(d; �; d). Hence it is not sufficient to just track the distance of a symbol to its last occurrence. Given a

symbold and a periodl, if DCd;l is larger than or equal to themin rep threshold, then it is possible thatd might participate in some valid pattern of periodl. We can use this property to reduce the candidate

patterns significantly.

6 Longest Subsequence Identification for a Single Pattern

If a symbol d and periodl pair has passed the distance-based pruning, then the longest subsequence

identification (LSI) algorithm is used to discover the subsequence with the most repetitions of(d; �; : : : ; �)
with periodl. Each occurrence ofd in the sequence corresponds to a match of the pattern. Ifd occurs at

positioni, then the subsequence from positioni to position(i+ l � 1) is a match of the pattern. Consider

the pattern(d1; �; �) and the sequence in Figure 3(a).d1 occurs 11 times, each of which corresponds to a

match denoted byDj (1 � j � 11). Before presenting the algorithm, we first introduce the concept of

extendibilityandsubsequence dominance.

Definition 6.1 For any segmentS with respect to some patternP , letD1; D2; : : : ; Dk be the list of matches
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D4 D6 D8 D9 D11

D1 D3 D5 D7

D2 D4 D6 D8 D9 D11

D2 D4 D6

D1 D3 D5 D7

D1 D3 D5 D7

D2

(b) Prefixes of  D1, D3, D5, D7

d1 d1 d1d1 d1d4 d2 d4 d3 d1d1 d3d1 d1d2 d1d2

D10

d1 d2 d4 .  .  .

(a) Matches of (d1, *, *)

(c) Extendibility and dominance

position 12
X1

X2

X3

position 14

invalid prefixes

valid prefixesD1 D3 D5

D1 D3

D1

Figure 3: Example of Extendibility and Subsequence Dominance

of P that formS. Then the segmentS 0 formed byD1; : : : ; Dk0 is called aprefix of S, where1 � k0 � k.S is also referred to as anextensionof S 0. S 0 is called avalid prefix of S if S 0 is a valid segment.

Definition 6.2 A segmentS is extendible iff it is a prefix of some other segmentS 0 (S 0 6= S).
Any segment is also a prefix of itself. For any segmentS whose number of repetition isx, there existx
different prefixes ofS. Figure 3(b) shows all four possible prefixes of the segment[D1; D3; D5; D7] in

Figure 3(a), among which the first two are not valid prefixes while the other two are valid ifmin rep = 3.

We also say that the first three prefixes in Figure 3(b) are extendible.

Definition 6.3 For any two valid subsequencesX andY with the same starting position,X is aprefix ofY (andY is anextensionof X) iff each valid segment inX is also a valid segment inY , except that the

last valid segmentS in X may be a prefix of a valid segmentS 0 in Y . Let j be the starting position of the

first match of the pattern inY but not inX. Then we say thatX is extended on positionj to generateY .

Definition 6.4 Given a patternP , a valid subsequenceX is extendible if there exists another valid sub-

sequenceY (Y 6= X) such thatY is an extension ofX.
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In Figure 3(c),X1, X2, X3 are three valid subsequences of(d1; �; �) if min rep = 3 andmax dis = 5.X1 is a prefix ofX2 and is extended at position 12 to generateX2. As a result,X1 is also said to be

extendible.

Definition 6.5 Given a positioni, for any two valid subsequencesX andY that end between positions(i�max dis� 1) andi, we say thatX dominatesY at positioni iff the overall number of repetitions ofX is greater than or equal to that ofY .

It is clear that, at position 14 in Figure 3(c),X3 dominatesX1. This subsequence dominance defines a

total ordering among the set of valid subsequences that are considered to beextendibleat any given posi-

tion. If X dominatesY at some positioni (Figure 4(a)), then the subsequenceX 0 generated by appendingZ toX starting at positioni can not be shorter than the extensionY 0 of Y generated by appendingZ to Y
(Figure 4(b)). Therefore, we do not need to extendY at positioni. Note that we still have to keepY since

we may need to extendY (to includeV in Figure 4(c)) at some later positionj(j > i). This scenario may

happen whenX ends at an earlier position thanY does andX is known to be not extendible at positionj.
This provides the motivation and justification of the pruning technique employed in our algorithm.

Y

Z

V

ZY

Z

V

VY

j - max_dis

(a)

(b)

(c)

X

X

X

X

X’

Y’

i - max_dis i

jj - max_dis

not necessary to generate

not extendible

i ji - max_dis

Figure 4: Subsequence Dominance
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6.1 Algorithm Description

When scanning through a sequence to determine the longest subsequence containing a pattern(d; �; : : : ; �),
the discovery process may experience the following phases repeatedly:� Phase A:Segment validation. At least one instance of(d; �; : : : ; �) is found (in the latest segment of

a subsequence), but the number of repetitions of the patternis still less thanmin rep.� Phase B:Valid segment growth. The segment is now considered to be valid and the repetitioncount

may continue to grow.� Phase C:Extension(or disturbance). A valid segment may have ended. It is now going through

some disturbance or noise region to see whether it can get extended to another segment of the

pattern withinmax dis, referred to as theextension window. If so, it returns to Phase A. Otherwise

the subsequence terminates.

There are several challenges here. First of all, the transition point from Phase B to Phase C is not obvious.

Although missing the next consecutive match clearly signals the transition to Phase C, the presence of the

next match does not necessarily mean the continuation of Phase B. This is illustrated byX1 in Figure 1 at

the(j�2)th position. Secondly, the transition point from Phase C to Phase A is not straightforward, either.

In fact, any (not just the first)d occurring within the extension window can potentially be a candidate

leading to a new extension of the subsequence. ForX2 in Figure 1, it is the secondd1 in the extension

window that leads to a valid segment. We thus need to develop an efficient tracking mechanism for

managing the phase transitions.

Furthermore, there is also the pruning issue. There can be many overlapping subsequences of a pat-

tern. An efficient pruning criterion needs to be developed toprune the subsequences that cannot become

the longest valid subsequence. This will reduce the number of concurrent subsequences that need to be

tracked. The problem here is that the longest subsequence ata particular instant may be overtaken by a

shorter overlapping subsequence. This is clearly demonstrated in Figure 5(a) byX andY . Assume thatmin rep = 3 andmax dis = 5. After recognizing segmentD7 (beforeD8 is encountered),X overtakesY even thoughY grows to be the longest valid subsequence later. However, wealso observe that for
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any two valid subsequencesX 0 andY 0, if X 0 begins to dominateY 0 at some positionk in the sequence,

any further extension ofY 0 will always be dominated by some extension ofX 0 (Figure 5(b)). We can

thus pruneY 0 after positionk. A good point to check for dominance relationship is at a point when a

segmentZ first becomes valid. This is the point whereX 0 that encompassesZ becomes valid and the two

overlapping subsequences converge to a common tail segment.

D4 D6 D8 D9 D11

D1 D3 D5 D7

D2 D4 D6 D8 D9 D11

D1 D3 D5 D7

D1 D2 D4

D3 D5 D6 D8 D10

D1 D2 D4 D6 D8 D10

D6 D8 D10D3 D5

D2

(b)

d1 d1 d1d1 d1d4 d2 d4 d3 d1d1 d3d1 d1d2 d1d2

D10

d1 d2 d4 .  .  .

X

Y

(a)

d1 d1 d1d1d1 d1 d1

D7

d1d3 d4 d2 d4 d2 d3 d2 d1

D9

.  .  .d1 d3

segment Z

k

X’

Y’

Figure 5: Valid subsequences of(d1; �; �) with min rep = 3 andmax dis = 5
Inspired by above observations, the algorithm can be outlined as follows. As scanning through the

input data sequence, each time a match of pattern(d; �; : : : ; �) is identified (say, at positioni), the set of

currentlyextendiblesubsequences are extended according to the following principles.� Mark the subsequences that end prior to positioni� 1 as in Phase C.� Only the dominating subsequence in Phase B is extended to include the newly discovered match.� For each subsequence in Phase A, simply extend it by one repetition and check whether the transition

point to Phase B is reached. If so, mark this subsequence as inPhase B. If multiple subsequences

are in Phase B, then only the dominating one is retained.
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� The subsequence with most repetitions in Phase B and C is identified and used to update thelongest

valid subsequencefor pattern(d; �; : : : ; �).� The dominating subsequence in Phase C is also extended. The newly discovered match serves as

the beginning of a new segment and the subsequence transits to Phase A.

To address the phase transition issues, the algorithm maintains three separate data structures. Theongoing seq queue tracks all subsequences in Phases A and B. Thevalid seq queue tracks the potential

subsequences in Phase C. The elements in these two queues areoverlapped as the transition from Phase B

to Phase C is fuzzy. In fact, every subsequence in Phase B willappear in bothongoing seq andvalid seq
queues. Finally, there is thelongest seq that tracks the longest subsequence on a pattern detected sofar.

We now describe the contents of the various data structures after scanning theith position of the input

sequence.� longest seq: It contains the longest valid subsequence that is known (atpositioni) to be not ex-

tendible. Since we have no knowledge about the data behaviorafter positioni, only valid subse-

quences that end prior to position(i � max dis � 1) are guaranteed to be not extendible at this

moment. We cannot determine the extendibility of any valid subsequence that ends on or after posi-

tion (i �max dis� 1). Therefore,longest seq is the longest valid subsequence that ends prior to

position(i�max dis� 1).� onging seq: It contains a set of subsequences that are currently being extended, whose last segment

may or may not have enough repetitions to become valid. As we will explain later, the ending

position of these subsequences are betweeni and(i + l � 1) wherel is the period length2. Thus,

we can organize them by their ending positions via a queue structure. Eachentry in the queue holds

a set of subsequences ending at the same position as illustrated in Figure 6(a). For example, if we

want to verify the pattern(d1; �; �) against the sequence in Figure 6(c) with thresholdsmin rep = 3
andmax dis = 5, theongoing seq queue is illustrated in Figure 6(d) after processing thed1 that

occurs in the12th position. There are three subsequences being extended, one of which (i.e.,S1)2It is obvious that there can be at mostl different ending positions for these subsequences.
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ends at position14 (D7 is the last match) while the rest (i.e.,S2 andS3) end at position13 (D6 is

the last match). We need to maintain bothS2 andS3 because both of them have a chance to grow to

the longest subsequence. Even thoughS2 is longer thanS3, it is not a valid subsequence yet since

the last segment does not meet themin rep requirement. Therefore, we cannot discardS3 at this

moment.

subsequences with
this ending position

ending position

(a) Data Structure of Each Entry
in the ongoing_seq Queue

D3 D5 D6 D8 D10

d1 d1 d1d1d1 d1 d1

D1 D2 D4 D7

d1d3 d4 d2 d4 d2 d3 d2 d1

D9

d1 d3
31 2 4 5 6 7 8 9

pointer to the list of

d4

(c) Matches of (d1, *, *) in a Sample Sequence 

.  .  .sequence
position 19181716151413121110

start_pos

end_pos

total_rep

current_rep

(b) Auxiliary Information
for each subsequence

D1, D2, D4 D7

D3, D5, D6

D6D1, D2, D4

14

head tail

ongoing_seq

(d) Status of ongoing_seq Queue

S2

S3

S1

13

D3, D5, D6

D1, D2, D4

(e) Status of valid_seq

Figure 6:ongoing seq andvalid seq data structures� valid seq: It contains a set of valid subsequences that may be extendible. Figure 6(e) shows thevalid seq set which consists of two valid extendible subsequences. Itis necessary to keep them

since we may need to extend a valid subsequence multiple times by appending different matches of

the pattern. For example, the segment[D1; D2; D4] was extended twice as shown in Figure 6(d).

For each subsequence in eitherongoing seq or valid seq, we also keep track of the starting position(start pos), the ending position(end pos), the number of overall repetitions(total rep), and the number

of repetitions of the last segment(current rep) as shown in Figure 6(b) to facilitate the tracking.
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The LSI algorithm scans through the input data sequence, foreach occurrence of symbold at positioni in sequenceD, we have a match from positioni to (i + l � 1). Segments of pattern(d; �; : : : ; �) are

identified and can be used to extend previously generated subsequences if applicable. The following steps

are taken sequentially after a match is detected at positioni.
1. Thevalid seq is first examined to remove all subsequences whose ending position is more thanmax dis (i.e., the maximum disturbance threshold) away from the current position (i.e., positioni).

Note that these subsequences cannot be extended any furtherbecause of the violation of maximum

disturbance requirement. Thus, it is not necessary to keep them invalid seq. At the same time,

for each removed subsequenceseq from valid seq, we compare it withlongest seq and updatelongest seq if necessary.

2. Theongoing seq queue is then investigated. An iteration is taken where eachtime the entry at the

head of the queue is examined until the queue is empty or we reach an entry with ending position

on or afteri.
(a) If the ending position of the subsequences in this entry is prior to(i� 1), then the last segment

of every subsequence in this entry cannot be extended further. For example, when the circledd1 in Figure 6(c) is reached, we know that the segment[D1; D2; D4] had ended. We can simply

dequeue this entry and discard it. The rationale is that we donot have to immediately extend

these subsequences by initiating a new segment starting from the current match because all

valid extendible subsequences in this entry are already invalid seq and will be examined in

Step 3.

(b) If the ending position is exactly at(i�1), the last segment of the subsequences in this entry can

be extended to include the current match. (The circledd1 in Figure 6(c) also informs us that the

segment[D3; D5] can be extended to includeD6.) The following steps are taken sequentially.

i. We append the current match to each subsequence in this entry and update the auxiliary

data associated with them accordingly. The ending positionof these subsequences is also

updated to(i+ l � 1).
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ii. If there are multiple valid subsequences in this entry (i.e., whosecurrent rep satisfies the

minimum repetition requirement), then only the subsequence with the largesttotal rep
value is retained, the rest is discarded. It is obvious that all discarded subsequences here

are dominated by the retained one. Hence, the discard would not impact the correctness

of the algorithm while the efficiency can be improved.

iii. After Step ii, there can be at most one valid subsequencein this entry. If there exists one

valid subsequence, then, as a potential Phase C candidate transited from Phase B, this sub-

sequence is replicated tovalid seq. (Note that it still remains inongoing seq.) This gives

a valid subsequence the opportunity to be extended in multiple ways concurrently. For ex-

ample, in Figure 6(d), bothS1 andS2 are extended from the valid segment[D1; D2; D4].
It is necessary even if the last segment of this subsequence is still extendible. Because

this subsequence may dominate all subsequences invalid seq at some later position and

in turn will be extended.

iv. Finally, this entry (now ending at position(i + l � 1)) is moved from the head of theongoing seq queue to the tail of the queue.

3. Invalid seq, the subsequenceseq that ends prior to positioni and dominates all other subsequences

with ending position prior toi is identified3. If seq does not end at position(i � 1), then it is used

to create a new subsequencenew seq by extendingseq to include the current match4. The interval

between the ending position ofseq andi is treated as disturbance.new seq is, then, inserted into

the entry with ending position(i+ l� 1) in ongoing seq queue. (If such entry does not exist, a new

entry will be created and added to the tail of theonging seq queue.) This signals the transition of

the subsequence from Phase C to Phase A.

After the entire sequence is scanned, the subsequence whichhas the largesttotal rep value invalid seq[flongest seqg is returned.3In other words,seq is longest subsequence among those with ending position prior to i.4No new subsequence needs to be created ifseq ends at positioni � 1 because all necessary extensions of subsequences

ending at position(i� 1) have been taken at Step 2(b). Step 3 is essentially designed to give the valid subsequence(s) that ends

prior to position(i� 1) the opportunity to be extended further by appending the current match.
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6.2 Example

Figure 7(a) shows a sequence of symbols which is the same as inFigure 6(c) where the status of the various

data structures after processing the 7th occurrence ofd1 at position 12 are shown in Figure 6(d) and (e)

(The longest seq is still empty.). The process of the 8th, 9th, and 10th occurrences ofd1 is illustrated in

Figure 8 while the change to the data structures at each step is shown in Figure 7(b), (c), and (d).
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valid_seq
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Status of valid_seq after Step 2(b)iii

Figure 7: Status ofongoing seq, valid seq, andlongest seq
From the above example, we can make the following observations.� For ongoing seq, there can be at mostl entries, each of which corresponds to a different ending
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is moved from the head of ongoing_seq
to the tail of it.
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3

2(b)iii

is more than 5 positions away from the

no new subsequence needs to be 
needs to be generated.

Figure 8: Example for Illustration

position betweeni and(i + l � 1). Furthermore, in each of these entries, each subsequence has

a distinct length of the last segment (i.e., a distinctcurrent rep). Also, there can be only one

subsequence with acurrent rep larger than or equal tomin rep due to Step 2(b)ii.� Forvalid seq, each element has a distinct ending position between(i�max dis�1) and(i+ l�1)
due to Step 1.

6.3 Complexity Analysis

We first analyze the time complexity, then the space complexity of the LSI algorithm.

6.3.1 Time Complexity

The sizes ofvalid seq andongoing seq are essential for analyzing the time complexity of the LSI algo-

rithm. After processing one target symbold at positioni, at most one valid subsequence will be inserted

to valid seq (in Step 2(b)iii with ending position(i + l � 1) as indicated in Step 2(b)i). It follows that
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every subsequence invalid seq has different ending positions. In addition, after processing each match

(starting at positioni), the ending position of all subsequences invalid seq is between(i�max dis� 1)
and(i + l � 1) (inclusively). As a result, there are at mostmax dis + l + 1 subsequences invalid seq.
Thus, the complexity of Step 1 isO(max dis+ l). Since it is invoked once for each match of the pattern,

the overall time complexity of this step for processing LSI for a given symbold isO (nd � (max dis+ l))
wherend is the number of occurrences ofd.

Within the entire procedure, each entry removed from the head of ongoing seq in Step 2(a) is as-

sociated with a distinct ending position of the target pattern. Since there are at mostnd distinct ending

positions (each of which corresponds to a match) in Step 2(b)i, at mostnd entries are ever removed fromongoing seq for a given symbold and a given period. Step 2(a) can be invoked at mostnd times. There-

fore, the overall complexity for Step 2(a) isO(nd).
Consider the course of an entryr in ongoing seq from the time it is first initialized in Step 3 to the

time it is permanently discarded in Step 2(a). It is easy to show by induction that each subsequence inr has a distinct value ofcurrent rep. This claim holds trivially whenr is initialized in Step 3 where

only one subsequence is inr. At each subsequent time a new subsequencenew seq is added tor (in

Step 3) as a result of processing a matchM , the value ofcurrent rep of new seq is always1 sinceM
is the only match in the last segment ofnew seq (e.g.,S2 in Figure 6(d)). In contrast, thecurrent rep
of other subsequences inr are at least 2 after their last segments were extended to includeM (e.g.,S3
in Figure 6(d)). Therefore,new seq has a different value ofcurrent rep from other subsequences inr.
Thus, we can conclude that each subsequence inr holds a distinct value ofcurrent rep. Since there is

at most one subsequence whose last segment has at leastmin rep repetitions (due to Step 2(b)ii), the

number of subsequences inr is bounded bymin rep. The complexity of each invocation of Step 2(b)

is O(min rep). At any time, each entry inongoing seq is associated with a distinct ending position.

When processing a match starting at positioni, at most one entry has ending positioni � 1. The overall

complexity of Step 2(b) for a given symbold and a given periodl isO(nd �min rep).
As we explained before, at most(max dis+ l+1) subsequences are invalid seq at any time. In turn,

it takesO(max dis+ l) time complexity each time Step 3 is invoked. This brings to a total complexity ofO (nd � (max dis+ l)). In summary, the overall complexity of the LSI algorithm fora given symbol and
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period lengthl is O (nd � (min rep+max dis+ l)) :
For a given period lengthl, the complexity to find the “longest” subsequence for all symbols is henceO X8d nd � (min rep+max dis+ l)!
which isO (N � (min rep+max dis+ l)) whereN is the length of the input sequence. Thus, the time

complexity to discover the “longest” single-symbol subsequence for all periods and symbols isO (N � Lmax � (min rep+max dis+ Lmax))
whereLmax is the maximum period length. This is the worst case complexity. Since the distance-based

pruning may prune a large number of symbol and period pairs, the real running time could be much faster.

In addition, we will propose several techniques that can reduce the time complexity of the LSI algorithm

in Section 6.4.

6.3.2 Space Complexity

There are two main data structures in LSI,ongoing seq andvalid seq. For each symbold and a given

period lengthl, the size ofvalid seq isO(max dis+ l) whereas the size ofongoing seq is bounded bynd
since for each occurrence ofd, one new subsequence is inserted toongoing seq. Furthermore, since each

entry ofongoing seq has at mostmin rep subsequences, the size ofongoing seq isO(min(nd; min rep�l)). Therefore, the space complexity to find the “longest” subsequences for all symbols and a given period

lengthl is O ((max dis+ l)�Num Symbols+min(N;min rep� l �Num Symbols))
whereNum Symbols is the number of symbols in the input sequence. The overall space complexity for

all possible period lengths isO �(max dis+ Lmax)�Num Symbols� Lmax +min(N � Lmax; min rep� L2max �Num Symbols)� :
The above space complexity analysis is again a theoretical bound in the worst case; however, the space

requirement is much smaller in practice shown in Section 8.2. Thus, in reality, all data structures can be

easily fit into main memory.
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6.4 Improvement of the Longest Subsequence Identification Algorithm

The time complexity of the LSI algorithm can be improved further. One way is to use a queue to storevalid seq and a heap to index all subsequences invalid seq according to theirtotal rep. Each time a

subsequence is inserted intovalid seq, it is added to the end of the queue. This would naturally make

all subsequences lie in the queue in ascending order of theirending positions. Thus, Step 1 can be easily

accomplished by dequeue obsolete subsequence(s) from the head of the queue. Of course, each of such

operation would incurO(log(max dis + l)) overhead to maintain the indexing heap. However, in virtue

of the heap indexing, each invocation of Step 3 only requiresO(log(max dis + l)) time complexity for

period lengthl. Therefore, the overall complexity of LSI algorithm for allperiod lengths and symbols is

reduced to O (N � Lmax � (min rep+ log(max dis+ Lmax))) : (1)

6.5 Proof of Correctness

Lemma 6.1 The last segment of any invalid subsequence removed fromongoing seq is not extendible.

Proof. The only place we may remove an invalid subsequence fromongoing seq is in Step 2(a). Assume

that the subsequence ends at positionk (k < i� 1). It must be true that no match starts on positionk+15.
Thus, the last segment of the invalid subsequence is not extendible.2
Lemma 6.2 At least one prefix of each longest valid subsequence has beenput in bothongoing seq andvalid seq.
Proof. Consider the starting position, sayj, of a longest valid subsequenceX. All valid segments starting

before position(j �min rep � l) have to end before position(j �max dis � 1). (Otherwise, a longer

valid subsequence can be formed by extendingX “backwards” to include additional valid segment(s).

This contradicts the assumption thatX is the longest valid subsequence.) As a result,valid is empty at

positionj. Then a new subsequence (denoted byY ) starting at positionj consisting of one match of the5Otherwise, all subsequences in that entry would be extendedto end at positionk + l.
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pattern is added toongoing seq. In addition,j is the starting position of a valid segment (because it is

the starting position ofX). By Lemma 6.1,Y will stay in ongoing seq until it grows to become a valid

subsequence (i.e., cumulates at leastmin rep repetitions). WhenY is extended to a valid subsequence

(denoted byZ), Z will be replicated tovalid seq becauseZ is the longest one inongoing seq. (All other

subsequences inongoing seq start later thanZ.) Thus, this lemma holds.2
Lemma 6.3 After processing each match, all valid subsequences inongoing seq is also invalid seq.
Proof. All valid subsequences inongoing seq are generated in Step 2(b)i (some of which might be

removed immediately in Step 2(b)ii). The remaining one (if applicable) is then replicated invalid seq
(Step 2(b)iii).2

By Lemmas 6.1 and 6.2, for any longest valid subsequence, either it is fully generated and used to

updatelongest seq or one of its valid prefix is removed fromvalid seq without being extended further.

Now, consider the processing of a matchM starting on positioni.
Lemma 6.4 After processing a matchM that starts at positioni, one of the longest valid subsequences

that end between position(i�max dis� 1) and(i+ l � 1) is in valid seq.
Proof. When processing a matchM at positionsi to (i + l � 1), a valid subsequenceX with ending

positionk (i�max dis� 1 � k � i� 1) may not be extended to includeM due to one of the following

two reasons.

1. k = i � 1. X was removed fromongoing seq in Step 2(b)ii because of the existence of another

valid subsequenceY ending at positionk in ongoing seq such thatY dominatesX. Y is chosen to

be extended to includeM and to be retained inongoing seq for potential further extension.

2. Otherwise,X is in valid seq and is dominated by some other valid subsequenceY in valid seq,
which is extended to includeM and added intoongoing seq (Step 3).

In summary, the only reason to stop extendingX is thatX is dominated by some other valid subsequenceY that is extended to includeM and resides inongoing seq. By Lemma 6.3, all valid subsequences

in ongoing seq is in valid seq. Therefore, after processing each match, any valid subsequence ending
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between position(i�max dis� 1) and(i + l � 1) is either itself invalid seq or is dominated by some

other valid subsequence invalid seq. In other words, at least one of the longest valid subsequences that

end between position(i�max dis� 1) and(i+ l � 1) is in valid seq. 2
Lemma 6.5 After processing a matchM that starts at positioni, one of the longest valid subsequences

that end prior to position(i�max dis� 1) is in longest seq.
Proof. This proof is trivial because every time a subsequence is removed fromvalid seq (due to an

obsolete ending position), thelongest seq is updated if necessary.2
The following theorem is a direct inference of Lemma 6.4 and 6.5.

Theorem 6.6 After processing the entire sequence,longest seq holds one of the longest valid subse-

quences.

7 Complex Patterns

After discovering the single patterns, valid subsequencesof different symbols may be combined to form

a valid subsequence of multiple symbols of the same period. We employ a level-wise search algorithm,

which generates the subsequences ofi-patterns based on valid subsequences of(i � 1)-patterns with the

same period length. To efficiently prune the search space, weuse two properties: one is thesymbol

property, and the other is thesegmentproperty.

Property 7.1 (Symbol property) If a patternP is valid, then all of its generalizations are valid.

Property 7.2 (Segment property)If D0 = dj; dj+1; dj+2; : : : ; dk is a valid segment for patternP , thenD0 is also a valid segment of all generalizations ofP .

Since these two properties are straightforward, we would omit the proof. Based on these properties,

we can prune the candidates of a valid pattern efficiently. For example, if two patterns(d1; �; �; �) and(d2; �; �; �) are valid, then three candidate 2-patterns can be generated: (d1; d2; �; �), (d1; �; d2; �) and(d1; �; �; d2). As shown in Figure 9, all other 2-patterns of period 4 containingd1 andd2 are equivalent to
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Figure 9: Equivalent Complex Patterns

one of these three patterns with a shifted starting position. Similarly,(d1; d2; d3; �) can become a candidate

3-pattern only if(d1; d2; �; �), (d1; �; d3; �), and(d2; d3; �; �) are all valid.

After the candidate set of validi-patterns is generated, then a similar algorithm to LSI is executed to

verify whether these candidates are indeed valid patterns.As a side product, the LSI algorithm also finds

the valid subsequence with the most repetitions for each valid pattern.

8 Discussion

8.1 Parameters Specification

In our approach, the mining results can be effected by the choice of the two parametersmin rep andmax dis. When the parameters are not set properly, noises may be qualified as patterns. We use an

iterative method to set the proper value for these two parameters. After discovering patterns for a given

pair ofmin rep andmax dis, we prune those discovered patterns according to the statistical significance.

For example, if(a; �; �) is a discovered pattern and the expected continuous repetition of this pattern in a

random sequence exceeds themin rep threshold, then we can conclude that this pattern may occur due

to chance and it should be discarded. Notice that there may not be a uniform threshold ofmin rep andmax dis for statistical significance since the probability of occurrence of two patterns may be difference.

For instance, the occurrence probability of(a; �; �) should be higher than that of(a; b; �). After pruning, if

the number of remaining patterns is too small, and we can adjust the parameters ofmin rep andmax dis,
e.g., reducingmin rep or increasingmax dis, and mine patterns again. This process terminates when

there is a sufficient number of patterns discovered.
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8.2 Noises

There may be many types of noises in real applications. The parametermax dist is employed to recognize

the noises between segments of perfect repetitions of a pattern. There may exist other types of noises, e.g.,

intra-pattern noise. Let(a; c; �; b; �; �; b) be a pattern. The segmentaccbaaab may be the occurrence of

this pattern with some noise. (There is an extra symbol between the last twobs.) We can modify the

definition of asynchronous pattern slightly to recognize this type of noises. If a segment is very similar to

a pattern (within a certain degree), then we consider the segment as a repetition of the pattern. Without

major modification, our algorithm should be able to handle this type of noise.

8.3 Extensions

In some application, e.g., sensor network, multiple eventsmay occur simultaneously. As a result, it is

possible that multiple symbols may occur in the same position within a sequence. The proposed approach

can be easily extended to handle this situation. We only needto modify one step in our algorithm. When

generating candidates, we need to take into account all possible subsets of symbols at a time slot. For

example, if symbolsA;B occurred at the same time slot, then during candidate generation phase, we need

to consider four possible candidates for this time slot,fAg, fBg, fA;Bg, andf�g.

The other possible extension of the asynchronous pattern isto discover possible sequential rules, e.g.,

“A is followed byB with a chance50% in a given subsequence”. To find this type of sequential rules, the

minimum repetitions can be viewed as support. The asynchronous patterns discovered by our algorithm

can be considered as the patterns that satisfy the support threshold. In the post-process step, we can verify

whether the rules satisfy the confidence requirement. To quality the rule “A is followed byB with a chance50%, then byC with a probability75% in a given subsequence”, all three patterns(a; �; : : :), (b; �; : : :),
and(c; �; : : :) have to be valid for the a sufficient long portion of the sequence. Next, we can verify whether

the confidence requirement (e.g.,50% and75%) is also satisfied.
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9 Experimental Results

We implemented the PatternMiner in C programming language and it is executed on an IBM RS-6000

(300 MHz CPU) with 128MB running an AIX operating system.

9.1 Real Sequence

We first apply our model to a real trace of a web access log. Scour is a web search engine specialized in

multimedia content search whose URL is “http://www.scour.net”. Since early of 2000, the average daily

number of hits on Scour has grown over one million. A trace of all hits on Scour between March 1 and

June 8 (total 100 days) were collected. The total number of accesses is over 170 million. Then the entire

trace is summarized into a sequence as follows. The trace is divided into 10 minute intervals. The number

of hits during each 10 minute interval is calculated. Finally, we label each interval with a symbol. For

example, if the number of hits is between 0 and 4999, then thisinterval is labeled asa, if the number of

hits is between 5000 and 9999, then this interval is labeled as b, and so on. The summarized sequence

consists of 14400 occurrences of 71 distinct symbols.

There exist some interesting patterns discovered by our algorithm. Whenmin rep andmax dis are

set to 4 and 200, respectively, there are overall 212 patterns discovered. The following is some example

of discovered patterns. There exists a pattern (b,b, b) in weekdays between 3am and 8:30am EST. Another

pattern (c, c, c) occurs during 11am to 5pm EST weekday.

In the above experiment, the overall length of the sequence is relatively short (14400), hence, all three

mining processes are done in less than 1 minute. To further understand the behavior of our proposed

asynchronous pattern mining algorithm, we constructed four long synthetic sequences and the sensitive

analysis of our algorithm on these sequences is presented inthe following section.

9.2 Synthetic Sequence Generation

For the purpose of evaluation of the performance of the PatternMiner, we use four synthetically generated

sequences. Each sequence consists of 1024 distinct symbolsand 20M occurrences of symbols. The

synthetic sequence is generated as follows. First, at the beginning of the sequence, the period lengthl
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of the next pattern is selected based on a geometric distribution with mean�l. The number of symbols

involved in a pattern is randomly chosen between 1 and the period l. The number of valid segments is

chosen according to a geometrical distribution with mean�s. The number of repetitions of each valid

segment follows a geometrical distribution with mean�r. After each valid segment, the length of the

disturbance is determined based on a geometrical distribution with mean�d. This process repeats until

the length of the sequence reaches 20M. Four sequences are generated based on values of�l, �s, �r,
and�d in Table 1. In the following experiments, we always setLmax = 1000 and for each periodl,max dis = min rep�l4 .

Data Set �l �s �r �dDS1 5 5 50 50DS2 5 5 1000 1000DS3 100 1000 50 50DS4 100 1000 1000 1000

Table 1: Parameters of Synthetic Data Sets

9.3 Distance-based Pruning

In this section, we are investigating the effects of distance-based pruning. Without the distance-based

pruning, there could be as many asj = j �Lmax different single patterns(d; �; : : : ; �) (8d 2 =). Fig-

ure 10(a) shows the fraction of patterns eliminated by distance-based pruning. It is evident that the num-

ber of pruned patterns is a monotonically increasing function of themin rep threshold. With a reasonablemin rep threshold, only a small portion of potential single patterns need to be validated and used to

generate candidate complex pattern.

Figure 10(b) shows the space utilized byongoing seq andvalid seq for all patterns in the LSI algo-

rithm. The real space utilization is far less than the theoretical bound shown in Section 6.3.2 due to the

following two reasons. First a large number of candidate patterns are pruned. (More than 90% as shown in

Figure 10(a).) Secondly, in the theoretical analysis, we consider the worst case for the space utilization ofongoing seq, however, in reality, the space occupiedongoing seq is much less than the theoretical bound.
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Figure 10: Effects of Distance-based Pruning

9.4 Pattern Verification

After the distance-based pruning, each remaining potential single pattern is validated through the LSI

algorithm. Since the validation process (even for a given pattern) is not a trivial task, in this subsection,

we demonstrate the efficiency of our LSI algorithm by comparing it with a reasonable two stage (TS)

algorithm. In the TS algorithm, for a given pattern, all valid segments are first discovered, then all possible

combinations of valid segments are tested and the one with the most repetition is chosen. Figure 11 shows

the average elapse time of validating a pattern. (Note that the Y-axis is in log scale.) It is evident that LSI

can outperform the TS algorithm by at least one order of magnitude regardless themin rep threshold.

9.5 Overall Response Time

Figure 12 shows the overall response time of PatternMiner tofind all patterns. The x-axis shows the value

of min rep whereas the y-axis shows the overall response time of PatternMiner. The higher themin rep
threshold, the shorter the overall response time. This is incontrast to Formula 1 due to the effect of

distance-based pruning shown in Figure 10.
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Figure 11: LSI Algorithm vs. TS Algorithm
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Figure 12: Overall Response Time of PatternMiner

10 Conclusion

In this paper, we propose a more flexible model of asynchronous periodic patterns to mine patterns that are

of any length and may only be present within a subsequence, and whose occurrences may be shifted due
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to disturbance. Two parametersmin rep andmax dis are employed to specify the minimum number of

repetitions required within each contiguous segment of pattern occurrences and the maximum disturbance

allowed between any two successive valid segments. Upon satisfying these two requirements, the longest

valid subsequence of a pattern is returned. A two phase algorithm is devised to first generate potential

periods by distance-based pruning followed by an iterativeprocedure to derive and validate candidate

patterns and locate the longest valid subsequence. We also show that this algorithm can not only provide

linear time complexity with respect to the input sequence length but also achieve space efficiency. This is

also demonstrated via the experimental results.
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