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Abstract

Periodicy detection in time series data is a challengindlpra of great importance in many appli-
cations. Most previous work focused on mining synchronaersogdic patterns and did not recognize
misaligned presence of a pattern due to the interventioaradam noise. In this paper, we propose a
more flexible model of asynchronous periodic pattern that beapresent only within a subsequence
and whose occurrences may be shifted due to disturbance. paveonetersnin_rep andmaz_dis
are employed to specify the minimum number of repetitiora th required within each segment of
non-disrupted pattern occurrences and the maximum allaligtédrbance between any two successive
valid segments. Upon satisfying these two requiremengslaihigest valid subsequence of a pattern is
returned. A two phase algorithm is devised to first generatential periods by distance-based prun-
ing followed by an iterative procedure to derive and vakdedndidate patterns and locate the longest
valid subsequence. We also show that this algorithm canmiptpoovide linear time complexity with

respect to the length of the sequence but also achieve sffimieney.
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1 Introduction

Periodicy detection on time series data is a challenginglpro of great importance in many real applica-
tions. Most previous research in this area assumed thatshelohnce within a series of repetitions of a
pattern, if any, would not result in the loss of synchroriaabf subsequent occurrences of the pattern with
previous occurrences [12] [13]. For example, “Joe Smitllsazewspaper every morning” is a periodic
pattern. Even though Joe might not read newspaper in theingoocecasionally, this disturbance will not
affect the fact that Joe reads newspaper in the morning @litheequent days. In other words, disturbance
is allowed only in terms of “missing occurrences” but not asgral as any “insertion of random noise
events”. However, this assumption is often too restrictivee we may fail to detect some interesting
pattern if some of its occurrences is misaligned due to iedemoise events. Consider the application
of inventory replenishmentThe history of inventory refill orders can be regarded asmal®} sequence.
Assume that the time between two replenishments of cold e¢relis a month normally. The refill order
is filed at the beginning of each month before a major outboddki which in turn causes an additional
refill at the 3rd week. Afterwards, even though the replemisht frequency is back to once each month,
the refill time shifts to the 3rd week of a month (not the begigrof the month any longer). Therefore, it
would be desirable if the pattern can still be recognizedmthe disturbance is within some reasonable
threshold.

In addition, the system behavior may change over time. Satterp may not be present all the time
(but rather within some time interval). Therefore, in thappr we aim at mining periodic patterns that
are significant within a subsequence of symbols which mayatomisturbance of length up to a certain
threshold. Two parameters, namemlyn_rep andmaxdis, are employed to qualify valid patterns and the
symbol subsequence containing it, where this subsequeartcen can be viewed as a list gélid seg-
ments of perfect repetitions interleaved by disturbance. Eadhil\sgment is required to be of at least
min_rep contiguous repetitions of the pattern and the length of @@ate of disturbance is allowed only
up tomazx_dis. The intuition behind this is that a pattern needs to regsaltfiat least a certain number
of times to demonstrate its significance and periodicy. @nather hand, the disturbance between two

valid segments has to be within some reasonable bound. v@feeiit would be more appropriate to treat



such disturbance as a signal of “change of system behavist2ad of random noise injected into some
persistent behavior. The parametetixz_dis acts as the boundary to separate these two phenomena. Ob-
viously, the appropriate values of these two parameteraphcation dependent and need to be specified
by the user. For patterns satisfying these two requirementsmodel will return the subsequence with
the maximum overall repetitions. Note that, due to the presef disturbance, some subsequent valid
segment may not be well synchronized with the previous o(esme position shifting occurs.) This in
turn would impose a great challenge in the mining process.

Similar to [13], we allow a pattern to be partially filled toabie a more flexible model. For instance,
(cold.medi *, *, *) is a partial monthly pattern showing that the cold digne is reordered on the first
week of each month while the replenishment orders in ther thinee weeks do not have strong regularity.
However, since we also allow the shifted occurrence of awdgment, this flexible model poses a difficult
problem to be solved. For a give pattef its associated valid segments may overlap. In order to find
the valid subsequence with the most repetitionsHokve have to decide which valid segment and more
specifically which portion of a valid segment should be gel@écWhile it is relatively easy to find the set
of valid segments for a given pattern, substantial diffiegltie on how to assemble these valid segments
to form the longest valid subsequence. As shown in Figurath,»win_rep = 3, Sy, S, and.S; are three
valid segments of the patteth = (d;, , x). If we setmax_dis = 3, thenX is the longest subsequence
beforeSs is considered, which in turn makés, the longest one. If we only look at the symbol sequence
up to positiony without looking ahead in the sequence, it is very difficuldezermine whether we should

switch to.S, to becomeX; or continue onS;.
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Figure 1: Example of Symbol Sequence



This indicates that we may need to track multiple ongoingsegbiences simultaneously. Since the
number of different assemblages (of valid segments) groypereentially with increasing period length,
the process to mine the longest subsequence becomes andaask (even for a very simple pattern such
as(dy, *,*)). To solve this problem, for a given pattern, an efficienaliym is developed to identify
subsequences that may be extended to become the longestdogganize them in such a way that the
longest valid subsequence can be identified by a single ddae ;mput sequence and at any time only a
small portion of all extendible subsequences needs to buiagd.

Another innovation of our mining algorithm is that it can cbser all periodic patterns regardless of
the period length. Most previous research in this area s patterns for some pre-specified period
length [12] [13] [21] or some pre-defined calendar [24]. Utioately, in practice, the period is not
always available a priori (It is also part of what we want toenout from the data). The stock of different
merchandises may be replenished at different frequenaieielf may be unknown ahead of titnand
may also varies from time to time). A period may span over famals of symbols in a long time series
data or just a few symbols. We first introduce a distancebpaaming mechanism to discover all possible
periods and the set of symbols that are likely to appear irequattern of each possible period. In order to
find the longest valid subsequence for all possible patt&raemploy a level-wise approach. The Apriori
property also holds on patterns of the same period. Thatvalid segment of a pattern is also a valid
segment of any pattern with fewer symbols specified in theepat For example, a valid segment for
(dy, dsy, %) will also be one for(dy, *, *). Then, for each likely period, all valid patterns with thieingest
supporting subsequences can be mined via an iterativeggoce

In summary, we claim the following contributions in this jeap
e A pattern can be partially specified, e.gi, x, x).
e A more flexible model of asynchronous periodic patternsappsed to allow mining of all patterns

— whose periods can cover a wide range and are not known a;priori

— that are present within only a subsequence;

1The replenishment order of a merchandise may not be presieutout rather be filed whenever the inventory is low.



— whose occurrences may be misaligned due to the inserticonoe sandom disturbance.

e A two phase algorithm is devised to first generate potengabgs by distance-based pruning fol-
lowed by an iterative procedure to derive and validate catdipatterns and locate the longest valid

subsequence containing each pattern.

e A segment-based approach is devised to discover the longledsubsequence for a given pattern

via a single scan of the input sequence.
e We also analyze the time and space complexity and prove theotoess of the proposed algorithm.

The remainder of this paper is organized as follows. Se&igives a brief overview of recent related
research to our problem. The general model is presentedciin8e3. Section 4 outlines the three major
steps of our algorithm. The algorithms of distance-basadipg, the singular pattern verification, and the
complex pattern verification are elaborated in Sections 3, Gespectively. We discuss some limitations
and extensions of our algorithm in Section 8. Section 9 prtssexperimental results. The conclusion is

drawn in Section 10.

2 Related Work

Discovering sequential patterns was first introduced iraf#] [25]. The input data is a set of sequences,
called data-sequences. Each data-sequence is a list shttaoms. Typically there is a transaction time
associated with each transaction. A sequential patteoncalssists of transactions, i.e., sets of items. The
problem is to find all sequential patterns with a user-spatifninimum support, where the support of a
sequential pattern is the percentage of data-sequendesotitain the pattern. The surprising sequential
pattern discovery is proposed in [28]. In this work, the austsearch for the patterns whose occurrence is
significantly greater than the expectation. The informagain is used to measure the degree of surprise
(or significance) of a pattern.
Full cyclic pattern was studied in [21]. The input data to][&la set of transactions, each of which

consists of a set of items. In addition, each transactioagged with an execution time. The goal is to



find association rules that repeat itself throughout theimjata. Han et. al. [13] presented algorithms
for efficiently mining partial periodic patterns by explogi some interesting properties related to partial
periodicity such as the Apriori Property and the max-sutgpathit set property. However, the proposed
solution requires that the predefined period and the synclumpattern.

In [7], Bettini et. al. proposed an algorithm to discover paral patterns in time sequences. The
basic components of the algorithm includes timed automadtta gvanularities (TAGs) and a number of
heuristics. The TAGs are for testing whether a specific tealpoattern, called a candidate complex
symbol type, appears frequently in a time sequence. Iniaddheuristics are used to reduce the number
of candidate symbol types. These heuristics exploit thermétion provided by explicit and implicit
temporal constraints with granularity in the given symbalsture.

The inclusion of a user defined calendar is studied in [24].sArwexplicitly defines a calendar and
interesting patterns are discovered based on the caleRdaexample, if a user defines temporal subse-
guence to start on the days when the US government annourees¢émployment rate as this calendar
and the calendar is applied to the stock prices in New YorklSExchange, then some interesting patterns

can be discovered relating the reaction of stock pricesdsdlannouncements.

3 General Model

In this section, we formally define the model that we are itigasing in this paper. Le& = {d;,d,, ..., }
be a set of literals and be a sequence of literals . We first introduce some notations that would

facilitate the discussion in the remainder of the paper.

Definition 3.1 A pattern with period [ is a sequence dfsymbolgp;, ps, . .., p1), wherep; € & and the

others are either a symbol i or *, i.e.,p; € SU* (2 < j <1).

Since a pattern can start anywhere in a sequence, we onlytmeedsider patterns that start with a non
“*” symbol. Here, x is introduced to allow partial periodicy. In particular, weex to denote the “don’t
care” position(s) in a pattern [13]. A pattefhis called ai-pattern if exactly: positions inP are symbols

from <. (The rest of the positions are filled by *.) For examglé,, ds, x) is a 2-pattern of period 3.



Definition 3.2 For two patternsP = (py,ps,...,p) and P’ = (p},p), ..., p;) with the same period,
P’ is aspecializationof P (i.e., P is ageneralization of P') iff, for each positionj(1 < j < ), either

pj = pj or p; = xis true.

For example, patterfd,, ds, *) is considered as a specialization (@f;, , x) and a generalization of

(dla d27 d3)

Definition 3.3 Given a patternP = (pi,po,...,p;) With period/ and a sequence dfliterals D' =
di,ds, ..., d;, we say thatP matchesD’ (or D’ supports P) iff, for each positionj(1 < j < [), either

p; = * 0Or p; = d; is true. D' is also called amatch of P.

In general, given a sequence of symbols and a paftermultiple matches of” may exist. In Fig-
ure 2(a),D;, Do, ..., D; are seven matches (f;, , d»). We say that two matches of the same period are
overlappediff they share some common subsequence, andligfeint otherwise. For instancd),; and
Ds are disjoint whileD; and D, are overlapped and their common subsequence is indicatibe Isjraded
area in Figure 2(a).

D1

dl ‘dl d; d%‘dl (:‘13 d?‘dl T4 d% dl d4‘dl ‘dS d% dS‘dl d‘4 d%‘dl c‘15 d% d3

D2 D3 D4 D5 D6 D7
(a) matches of (d1, *, d2)

di[dl d2 d2[di d3 d2]dl d4 d2]dl d4[dl d3 d2] d5[dl d4 d2[ dl d5 d2] d3

(b) segments of (d1, *, d2)

di[dl d2 d2 dl d3 d2 dl d4 ddd1 d4\dl*d3 d2] d5(dl d4 d2 di d5 d2] d3

S1 S2 S3
disturbance

(c) valid segments of (d1, *, d2)

d1[dl d2 d2 dl d3 d2 dl d4 dddl d4 di[dl d5 d2 dl d4 d2 di d5 d2] d3

lid sub
(d) valid subsequence of (d1, *, d2) "o ¢ S-bseduence

Figure 2: Example of matches and segmentSiofsx, d,)

Definition 3.4 Given a pattern? with period/ and a sequence of symbdls a list of k£ (k > 0) disjoint



matches of? in D is called asegmentwith respect taP iff they form a contiguous subsequencdofk

is referred to as th@umber of repetitions of this segment.

SegmentsD,, D3, and D, form a contiguous subsequence as shown in Figure 2(b). fOnerehe
subsequencé,, ds, ds, di, ds, do, dy, dy, dy IS @ Segment with respect to the pattédn, , d,). Note that,

by definition, each match of a pattefhitself is also a segment with respectfo

Definition 3.5 A segment with respect to a patter® is avalid segmentiff the number of repetitions of

S (with respect taP) is at least the required minimum repetitions (i:@4n_rep).

If the value ofmin_rep is set ta2, then both segments andS; qualify as valid segments as illustrated
by shaded area in Figure 2(cJ; is not a valid segment since it only contains one matcfi/gfx, d,). In
general, given a patterf, any sequence of symbol can be viewed as a list of disjoiid gagments (with
respect taP) interleaved by disturbance. For example, the subsequamtesed in the dashed contour in

Figure 2(c) is treated as disturbance between two valid saggfi; andSs.

Definition 3.6 Given a sequenc® and a patternP, a valid subsequencen D is a set of non-overlap
valid segments where the distance between any two suceesdid segments does not exceed the pa-
rametermax_dis. Theoverall number of repetitions of a valid subsequence is equal to the sum of the
repetitions of its valid segments. A valid subsequence tivélmost overall repetitions d? is called its

longest valid subsequence

Definition 3.7 For a sequence of symboal3, if there exists some valid subsequence with respect to a

pattern, then this pattern is calledvalid pattern.

It follows from the definition that any valid segment itsedf also a valid subsequence. If we set
mazx_dis = 4, even thought; andS; in Figure 2(c) are individually valid subsequences, theresonot
exist a valid subsequence containing both of them due toittetion of the maximum allowed disturbance
between them. In contrast, the subsequence enclosed byddiasd in Figure 2(d) is a valid subsequence

whose overall number of repetitions is 6.



For a given sequence of literal3, the parametersiin_rep andmax_dis, and the maximum period
length L,,..., we want to find the valid subsequence that has the most bvepatitions for each valid

pattern whose period length does not excégg, .

4  Algorithm Overview

In this section, we outline strategies to tackle the prob#mmining subsequences with most overall

repetitions for all possible patterns.

1. Distance-based Prunindror each symbal, we examine the distance between any two occurrences
of d. Let DCy, be the number of times when such distance is exactr each period, the set of

symbols whoséC;; counters are at leastin_rep are retained for the next step.

2. Single Pattern VerificationFor each potential periaddand each symbal that passed the previous
step, a candidate 1-pattefh , do, . . ., d;) is formed by assignind, = dandd, = ... = d; = x. We
validate all candidate patteriig, «, .. ., *) via a single scan of the sequence. Note that any single
pattern of formatx, ..., d, , ..., x) is essentially equivalent to the pattérh «, . . ., %) (of the same
period) with a shifted starting position in the sequenceegmsent-based approach is developed so
that a linear scan of the input sequence is sufficient to éottag longest valid subsequence for a

given pattern.

3. Complex Pattern Verification An iterative process is carried out where at tkte iteration, the
candidate-patterns are first generated from the set of vélid 1)-patterns, and are then validated

via a scan of the data sequence.

We now elaborate each step in following sections.

5 Distance-based Pruning of Candidate Patterns

Since there are a huge number of potential pattép(sy|“=), a pruning method is needed to reduce the

number of candidates. The pruning method is motivated bybservation that if a symbdlparticipates

9



in some valid pattern of periol there should be at leastin_rep times that the distance between two
occurrences of is exactlyl (in order to form a valid segment). So the proposed distdrased pruning
method makes one pass over the data sequence to discovessblp periods and the set of symbols that
are likely to appear in some pattern of each possible peRodeach symbaf and period, the number
of times when the distance between two occurrences of d isgfjgence isis collected.

To perform the distance-based pruning, when scanning girdloe sequence, we need to maintain
a moving window of the lasL,,,, symbols scanned. For the next symbol, gaye compare it with
each of the symbol in the moving window. If a match occurs atjth position, the count for period
(Lmaz — j + 1) of symbold (denoted adC, ;... —;+1) iS incremented by 1. For example, in Figure 2(a),
the thirdd, in the fifth position will contribute to bottv,, ; andD,, 4. Due to the generality of our model,
for each occurrence of a symhélwe need to track its distance to all of its previous occuresnwithin
the moving window. Our model does not only allow partiallesiied patterns such &8, x, x) whered
can also occur in the “*” position, but also recognizes pateawith repetition of the same symbol such
as(d, x,d). Hence it is not sufficient to just track the distance of a sghtd its last occurrence. Given a
symbold and a period, if DCy, is larger than or equal to thein_rep threshold, then it is possible that
d might participate in some valid pattern of peribdWe can use this property to reduce the candidate

patterns significantly.

6 Longest Subsequence ldentification for a Single Pattern

If a symbold and period! pair has passed the distance-based pruning, then the tongesequence
identification (LSI) algorithm is used to discover the suhgnce with the most repetitions @f, «, . . ., )

with periodi. Each occurrence af in the sequence corresponds to a match of the patterthodturs at
position:, then the subsequence from positido position(i + { — 1) is a match of the pattern. Consider
the patternd;, , ) and the sequence in Figure 3(d).occurs 11 times, each of which corresponds to a
match denoted by); (1 < j < 11). Before presenting the algorithm, we first introduce theceqt of

extendibilityandsubsequence dominance

Definition 6.1 For any segment with respect to some pattef?y let Dy, D, . .., Dy be the list of matches

10



[‘)2 E‘)4 D‘6 I‘DS I'_‘)Q E‘)ll

I
‘dl di d4Hd1 di dszl di déhdl d2 dl‘ d3 d2 dl di1 d3 di, d2 d4 - - -

| \ \ \
D1 D3 D5 D7 D10

(a) Matches of (d1, *, *)

invalid prefixes
DI D3«
\ D1 D3 D5 j«————— valid prefixes

DI D3 D5 D7«
(b) Prefixes off D1, D3, D5, DY

position 14
position 12
XL »[ D2 D4 D6 |
X2~ [ D2 D4 D6 || DS | D9 DIl |
X3 DI D3 D5 D7 |

(c) Extendibility and dominance

Figure 3: Example of Extendibility and Subsequence Dontean

of P that formS. Then the segment formed byD,, ..., D, is called aprefix of S, wherel < k' < k.

S is also referred to as aextensionof S’. S’ is called avalid prefix of S if S’ is a valid segment.
Definition 6.2 A segmenf is extendibleiff it is a prefix of some other segme#it(S’ # S).

Any segment is also a prefix of itself. For any segm&nthose number of repetition is, there exist:
different prefixes ofS. Figure 3(b) shows all four possible prefixes of the segmBnt D3, D5, D;| in
Figure 3(a), among which the first two are not valid prefixedewvime other two are valid ifnin_rep = 3.

We also say that the first three prefixes in Figure 3(b) areneiée.

Definition 6.3 For any two valid subsequencasandY” with the same starting positiolX is a prefix of
Y (andY is anextensionof X) iff each valid segment i’ is also a valid segment i, except that the
last valid segmen$ in X may be a prefix of a valid segme$itin Y. Let; be the starting position of the

first match of the pattern il but not inX. Then we say thaX is extended on position; to generateY’.

Definition 6.4 Given a patternP, a valid subsequenc¥ is extendibleif there exists another valid sub-

sequencd” (Y # X) such thaft” is an extension ak'.

11



In Figure 3(c),X;, X», X3 are three valid subsequences(@f, x, x) if min_rep = 3 andmazx_dis = 5.
X, is a prefix of X, and is extended at position 12 to generdte As a result,X; is also said to be

extendible.

Definition 6.5 Given a position;, for any two valid subsequencésandY” that end between positions
(1 — max_dis — 1) andi, we say thafX dominatesY” at position: iff the overall number of repetitions of

X is greater than or equal to that af.

It is clear that, at position 14 in Figure 3(cY3 dominatesX;. This subsequence dominance defines a
total ordering among the set of valid subsequences thabagdered to bextendibleat any given posi-
tion. If X dominates” at some position (Figure 4(a)), then the subsequen¢egenerated by appending
Z to X starting at position can not be shorter than the extensidrof Y generated by appendirfgto Y
(Figure 4(b)). Therefore, we do not need to ext&éndt position;. Note that we still have to keep since
we may need to extend (to includel” in Figure 4(c)) at some later positigilj > ). This scenario may
happen wherX ends at an earlier position th&nhdoes andX is known to be not extendible at positign

This provides the motivation and justification of the pruptachnique employed in our algorithm.

j - max_dis
i-max_di§ ! ‘i j
| X | B
——~
|
(@)
not necessary to generate i - max_dis i
Y| Y N Z ]
X X b~ 1 Z
(b)
j - max_dis j
\ Y s V]
\ X XA V]

not extendible

(©

Figure 4: Subsequence Dominance
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6.1 Algorithm Description

When scanning through a sequence to determine the londgesstquuence containing a pattéth, . . ., x),

the discovery process may experience the following phagesatedly:

e Phase ASegment validatianAt least one instance @é, «, . . ., ) is found (in the latest segment of

a subsequence), but the number of repetitions of the pasistill less thamin_rep.

e Phase BValid segment growthThe segment is now considered to be valid and the repetibant

may continue to grow.

e Phase CExtension(or disturbancg. A valid segment may have ended. It is now going through
some disturbance or noise region to see whether it can gehaad to another segment of the
pattern withinmax _dis, referred to as thextension windowlf so, it returns to Phase A. Otherwise

the subsequence terminates.

There are several challenges here. First of all, the tiangibint from Phase B to Phase C is not obvious.
Although missing the next consecutive match clearly sigtta transition to Phase C, the presence of the
next match does not necessarily mean the continuation afgPBarhis is illustrated by, in Figure 1 at

the (7 — 2)th position. Secondly, the transition point from Phase Citade A is not straightforward, either.
In fact, any (not just the first}y occurring within the extension window can potentially beamdidate
leading to a new extension of the subsequence. X=0in Figure 1, it is the second, in the extension
window that leads to a valid segment. We thus need to develogffecient tracking mechanism for
managing the phase transitions.

Furthermore, there is also the pruning issue. There can g maerlapping subsequences of a pat-
tern. An efficient pruning criterion needs to be developegrtme the subsequences that cannot become
the longest valid subsequence. This will reduce the numbeormcurrent subsequences that need to be
tracked. The problem here is that the longest subsequerecpatticular instant may be overtaken by a
shorter overlapping subsequence. This is clearly dematestin Figure 5(a) by andY. Assume that
min_rep = 3 andmax_dis = 5. After recognizing segmen?; (before Dy is encountered)X overtakes

Y even thought” grows to be the longest valid subsequence later. Howevenlsegeobserve that for

13



any two valid subsequencé§ andY”, if X’ begins to dominat&” at some positiort in the sequence,
any further extension of” will always be dominated by some extensionf (Figure 5(b)). We can
thus pruneY”’ after positionk. A good point to check for dominance relationship is at a pwinen a

segment first becomes valid. This is the point wheke that encompassés becomes valid and the two

overlapping subsequences converge to a common tail segment

D2 D4 D6 D8 D9 D11

\ \ \ \ \ \
\ || || ] |1 || \
d1 dl d4 dl dl d2 dl dl d4 dl d2 dl d3d2 dl di d3 di d2 d4- -

D1 D3 D5 D7 D10
Y [ D2 D4 D6 || D8 D9 DII |
X [ DI D3 D5 D7 |
()
D3 D5 D6 D8 D10

\ \ \ \ \
\ || !
d1 d3 a4 d1 a1 d%‘ledl d4 a2 d1 d1 d‘3d1‘ d2 di di d3 - -

D1 D2 D4 D7 D9
YT D3 D5 D6 D8 D10 |
X D1 D2 D4 O D6 D8 D10 |
e segmentZ——————}

t
(b) k

Figure 5: Valid subsequences (@, , x) with min_rep = 3 andmaz_dis = 5

Inspired by above observations, the algorithm can be adles follows. As scanning through the
input data sequence, each time a match of patiéra . .., ) is identified (say, at positiof), the set of

currentlyextendiblesubsequences are extended according to the followingiplésc
e Mark the subsequences that end prior to positienl as in Phase C.
¢ Only the dominating subsequence in Phase B is extendedltmathe newly discovered match.

e Foreach subsequence in Phase A, simply extend it by onetrepeind check whether the transition
point to Phase B is reached. If so, mark this subsequenceRi{saise B. If multiple subsequences

are in Phase B, then only the dominating one is retained.

14



e The subsequence with most repetitions in Phase B and C igfiddrand used to update thengest

valid subsequender pattern(d, , . .., *).

e The dominating subsequence in Phase C is also extended. elllg discovered match serves as

the beginning of a new segment and the subsequence tranBitsise A.

To address the phase transition issues, the algorithm anagnthree separate data structures. The
ongoing_seq queue tracks all subsequences in Phases A and Budilxé seq queue tracks the potential
subsequences in Phase C. The elements in these two queossidapped as the transition from Phase B
to Phase C is fuzzy. In fact, every subsequence in Phase Bppéar in botlhngoing_seq andwvalid_seq
gueues. Finally, there is thengest_seq that tracks the longest subsequence on a pattern detectad so
We now describe the contents of the various data structdteisscanning théth position of the input

sequence.

e longest_seq: It contains the longest valid subsequence that is knowpdsition:) to be not ex-
tendible. Since we have no knowledge about the data behafter position:, only valid subse-
qguences that end prior to positi¢h— max_dis — 1) are guaranteed to be not extendible at this
moment. We cannot determine the extendibility of any validssequence that ends on or after posi-
tion (i — max_dis — 1). ThereforeJongest_seq is the longest valid subsequence that ends prior to

position(i — max_dis — 1).

e onging_seq. It contains a set of subsequences that are currently bgtegaed, whose last segment
may or may not have enough repetitions to become valid. As Weewplain later, the ending
position of these subsequences are betwesrd (i + [ — 1) wherel is the period length Thus,
we can organize them by their ending positions via a queuetstie. Eactentryin the queue holds
a set of subsequences ending at the same position as thdsinaFigure 6(a). For example, if we
want to verify the patter(d, , x, x) against the sequence in Figure 6(c) with thresholds_rep = 3
andmazx_dis = 5, theongoing_seq queue is illustrated in Figure 6(d) after processingdhéhat

occurs in thel2th position. There are three subsequences being extendedfavhich (i.e.,S;)

21t is obvious that there can be at mastifferent ending positions for these subsequences.
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ends at position4 (D; is the last match) while the rest (i.&; and S;) end at position3 (Dg is
the last match). We need to maintain béthandS; because both of them have a chance to grow to
the longest subsequence. Even tholglis longer thanSs, it is not a valid subsequence yet since

the last segment does not meet thé:_rep requirement. Therefore, we cannot discékdat this

moment.
ending position
start_pos

pointer to the list of end_pos

subsequences with total_rep

this ending position current_rep

(a) Data Structure of Each Entry (b) Auxiliary Information
in the ongoing_seq Queue for each subsequence
D3 D5 D6 D8 D10
\ \ \ \ \
position 1 "5 7Te 9 10l 12 1374 15 16''17 18 10

sequence ‘dl d3 d4Hd1 d1 d% dl di dé} dz@ dl d3d1‘ d2 ‘dl dl d3‘ da4 - - -

| | | | \
D1 D2 D4 D7 D9

(c) Matches of (d1, *, *) in a Sample Sequence

head tail

,,,,,,,,,,,,,,,

| [DI, D2, D3 !

ss -»D1,D2,D4 D6 ! ! [D3,D5,D8 '

s3 - +D3,D5,D6 L T
(d) Status of ongoing_seq Queue (e) Status of valid_seq

Figure 6:0ongoing_seq andvalid_seq data structures

e valid_seq: It contains a set of valid subsequences that may be extendiigure 6(e) shows the
valid_seq set which consists of two valid extendible subsequences riecessary to keep them
since we may need to extend a valid subsequence multipls tijmappending different matches of

the pattern. For example, the segm@nt, D,, D4] was extended twice as shown in Figure 6(d).

For each subsequence in eithergoing_seq or valid_seq, we also keep track of the starting position
(start_pos), the ending positiofiend_pos), the number of overall repetitiorigotal_rep), and the number

of repetitions of the last segmefaturrent_rep) as shown in Figure 6(b) to facilitate the tracking.
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The LSI algorithm scans through the input data sequencegidn occurrence of symbaélat position
i in sequence), we have a match from positionto (i + [ — 1). Segments of patterfi, «, ..., x) are
identified and can be used to extend previously generatestgubnces if applicable. The following steps

are taken sequentially after a match is detected at position

1. Thewalid_seq is first examined to remove all subsequences whose endingopos more than
max_dis (i.e., the maximum disturbance threshold) away from theeturposition (i.e., positior).
Note that these subsequences cannot be extended any hetiarse of the violation of maximum
disturbance requirement. Thus, it is not necessary to Keem invalid_seq. At the same time,
for each removed subsequeneg from valid_seq, we compare it withongest_seq and update

longest_seq if necessary.

2. Theongoing_seq queue is then investigated. An iteration is taken where @awhthe entry at the
head of the queue is examined until the queue is empty or vah r@a entry with ending position

on or after;.

(a) If the ending position of the subsequences in this estpyior to(: — 1), then the last segment
of every subsequence in this entry cannot be extended fuffloe example, when the circled
d; in Figure 6(c) is reached, we know that the segmént D,, D,] had ended. We can simply
dequeue this entry and discard it. The rationale is that weatdave to immediately extend
these subsequences by initiating a new segment startingtfie current match because all
valid extendible subsequences in this entry are already:fiial_seq and will be examined in

Step 3.

(b) If the ending position is exactly &t— 1), the last segment of the subsequences in this entry can
be extended to include the current match. (The cirdled Figure 6(c) also informs us that the

segmen{Ds, D5] can be extended to includg;.) The following steps are taken sequentially.

i. We append the current match to each subsequence in tinsasmd update the auxiliary
data associated with them accordingly. The ending posttidhese subsequences is also

updated tdi + [ — 1).
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il. If there are multiple valid subsequences in this entry.(whoseurrent_rep satisfies the
minimum repetition requirement), then only the subseqeenith the largestotal_rep
value is retained, the rest is discarded. It is obvious thaliscarded subsequences here
are dominated by the retained one. Hence, the discard wadlohnpact the correctness

of the algorithm while the efficiency can be improved.

iii. After Step ii, there can be at most one valid subsequémdkeis entry. If there exists one
valid subsequence, then, as a potential Phase C candiaasaéd from Phase B, this sub-
sequence is replicated talid_seq. (Note that it still remains iengoing_seq.) This gives
a valid subsequence the opportunity to be extended in neillipys concurrently. For ex-
ample, in Figure 6(d), both; and S, are extended from the valid segmen, D, D,].

It is necessary even if the last segment of this subsequerstdliextendible. Because
this subsequence may dominate all subsequencediti seq at some later position and

in turn will be extended.

iv. Finally, this entry (now ending at positiofi + [ — 1)) is moved from the head of the

ongoing_seq queue to the tail of the queue.

3. Inwalid_seq, the subsequenceq that ends prior to positiohand dominates all other subsequences
with ending position prior ta is identified. If seq does not end at positiof — 1), then it is used
to create a new subsequengey_seq by extendingseq to include the current matéhThe interval
between the ending position efq and: is treated as disturbanceew _seq is, then, inserted into
the entry with ending positioff +/ — 1) in ongoing_seq queue. (If such entry does not exist, a new
entry will be created and added to the tail of theying_seq queue.) This signals the transition of

the subsequence from Phase C to Phase A.

After the entire sequence is scanned, the subsequence ndgche largesbtal_rep value invalid_seqU

{longest_seq} is returned.

3In other wordsseq is longest subsequence among those with ending positiontpri.
“No new subsequence needs to be createdgifends at positiori — 1 because all necessary extensions of subsequences

ending at positiorii — 1) have been taken at Step 2(b). Step 3 is essentially desigmgektthe valid subsequence(s) that ends

prior to position(i — 1) the opportunity to be extended further by appending theectimatch.
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6.2 Example

Figure 7(a) shows a sequence of symbols which is the samd-agure 6(c) where the status of the various
data structures after processing the 7th occurrenek af position 12 are shown in Figure 6(d) and (e)
(Thelongest_seq is still empty.). The process of the 8th, 9th, and 10th o@nwes of/; is illustrated in

Figure 8 while the change to the data structures at eachssgtown in Figure 7(b), (c), and (d).

D3 D5 D6 D8 D10

position ‘ 7H 8 9 10H 11 12 1(4 14 15 16‘ ‘ 17 18 lé

sequence ‘dl d3 d4Hd1 d1 d% di di dé} d2 dl‘dl d3d1‘ d2 ‘dl di d3‘ da4 - - -

D1 D2 D4 D7 D9
(a) Matches of (d1, *, *) in a Sample Sequence

head tail

__.valid seq
s D1, D2, D4
pr¥ooin | [D3, D5, D8
SZ/\‘DlDZD D6, D8 ! : :
3 ' [D3, D5, D6, D3!
53/\ D3, D5, D6, D8 ; e :

Status of ongoing_seq Queue after Step 2(b)i Status of valid_seq after Step 2(b)iii Status of ongoing_seq Queue after Step 2(b)iv

(b) Processing the 8th occurrence of d1

valid_seq head tail

ongoing_seq

SZ/\ Dl D2, D/ D6, D8

3/\4{D3 D5, D6, D8 I :

D1, D2, D4 S{\E‘ D3, D5, D6, D8

Status of valid_seq after Step 1

Status of longest_seq after Step 1 Status of ongoing_seq Queue after Step 2(aptatus of ongoing_seq Queue after Step 3

(c) Processing the 9th occurrence of d1

head tail head tail head tail
ongoing_seq _valdseq ...
7777777777777777777777 ' [D3, D5, D6
s »D3,D5.D¢—{ D9 | [D3, D5, D6, D8
i : D1,D2, D D6, D8, D10
32/\401 D2, D4—{D6, D8, D10 ; 55 D1, D2, D4—{D6, D8, D10 ; ! !

sz\ﬁ{ D3, D5, D6, D8, D10

Status of ongoing_seq Queue after Step 2(b)iStatus of ongoing_seq Queue after Step 2(b)ii Status of valid_seq after Step 2(b)iii ~ Status of ongoing_seq Queue after Step 2(b)iv

(d) Processing the 10th occurrence of d1

Figure 7: Status adngoing_seq, valid_seq, andlongest_seq

From the above example, we can make the following obsenatio

e Forongoing_seq, there can be at mostentries, each of which corresponds to a different ending
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Step| 8th occurrence of d1 at position 14 9th occurrence of d1 at position 16 10th occurrence of d1 at position 17
Both subsequences in valid_seq end D1, D2, D4 ends at position 9 which | valid_seq remains unchanged since
1 | less than 5 positions away from the is more than 5 positions away from the | both subsequences end less than 5
current position (i.e., position 14). current position. Thus, it is removed positions away from the current one.
As aresult, no subsequence will be from valid_seq since we can not get
discarded from valid_seq. any new extension from it. It is then
put in longest_seq. (longest_seq was
empty previously.)
2(a) This step is skipped since no entry in | The entry with ending position 14 This step is skipped since no entry in
onging_seq ends before position 13. | is removed from the onging_seq. onging_seq ends before position 16.
.| All subsequences in the entry with This step is skipped since no entry in All subsequences in the entry with
2(b)i | ending position 13 are extended to onging_seq ends at position 15. ending position 16 are extended to
include D8. The ending position is include D10. The ending position is
also updated to 16 to reflect the also updated to 19 to reflect the
change. change.
.| This step is skipped since only one S3is removed since S2 is also valid
2(b)ii| valid subsequence (i.e., S3) exists in and longer than S3.
this entry.
bii D3, D5, D6, D8 s replicated to [D1, D2, D4{ D6, D8, D10 is
2(bjiii | valid_seq. replicated to valid_seq.
.| This entry (which ends at position 16) This entry (which ends at position 19)
2(b)iv is moved from the head of ongoing_seq is moved from the head of ongoing_se|
to the tail of it. to the tail of it.
Since] D3, D5, Db ends at position 13, S4 is generated by extending Since] D3, D5, D6, D8 ends at
no new subsequence needs to be D3, D5, D6 to include D9. A new position 16, no new subsequence
3 generated. entry is created with ending position needs to be generated.
18 and is appended at the tail of
ongoing_seq.

Figure 8: Example for Illustration

position betweer and (i + [ — 1). Furthermore, in each of these entries, each subsequesce ha
a distinct length of the last segment (i.e., a distiactrent_rep). Also, there can be only one

subsequence with@arrent_rep larger than or equal tevin_rep due to Step 2(b)ii.

e Forvalid_seq, each element has a distinct ending position betwéemaz_dis —1) and(i+[—1)

due to Step 1.

6.3 Complexity Analysis

We first analyze the time complexity, then the space comilexithe LSI algorithm.

6.3.1 Time Complexity

The sizes obalid_seq andongoing_seq are essential for analyzing the time complexity of the L$loal
rithm. After processing one target symhbat position:, at most one valid subsequence will be inserted

to valid_seq (in Step 2(b)iii with ending positiof; + [ — 1) as indicated in Step 2(b)i). It follows that
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every subsequence tulid_seq has different ending positions. In addition, after proocgg®ach match
(starting at position), the ending position of all subsequencesdiid_seq is betweer(i — max_dis — 1)
and(i + [ — 1) (inclusively). As a result, there are at mestx_dis + [ + 1 subsequences imlid_seq.
Thus, the complexity of Step 1 &(max_dis + [). Since it is invoked once for each match of the pattern,
the overall time complexity of this step for processing L&ld given symbal is O (ng x (max_dis + 1))
wheren, is the number of occurrences @f

Within the entire procedure, each entry removed from tha teangoing_seq in Step 2(a) is as-
sociated with a distinct ending position of the target patteSince there are at mosy, distinct ending
positions (each of which corresponds to a match) in Step, Zbjnostn, entries are ever removed from
ongoing_seq for a given symboll and a given period. Step 2(a) can be invoked at mgsimes. There-
fore, the overall complexity for Step 2(a)i¥n,).

Consider the course of an entryin ongoing_seq from the time it is first initialized in Step 3 to the
time it is permanently discarded in Step 2(a). It is easy mashy induction that each subsequence in
r has a distinct value ofurrent_rep. This claim holds trivially whenr is initialized in Step 3 where
only one subsequence is in At each subsequent time a new subsequenee seq is added tor (in
Step 3) as a result of processing a matéhthe value ofcurrent_rep of new_seq is alwaysl since M
is the only match in the last segmentrafw_seq (e.g.,S: in Figure 6(d)). In contrast, theurrent_rep
of other subsequences inare at least 2 after their last segments were extended tad@dl/ (e.g.,S;
in Figure 6(d)). Thereforenew_seq has a different value afurrent_rep from other subsequencesiin
Thus, we can conclude that each subsequencehmlds a distinct value ofurrent_rep. Since there is
at most one subsequence whose last segment has atrleasip repetitions (due to Step 2(b)ii), the
number of subsequencesiris bounded bynin_rep. The complexity of each invocation of Step 2(b)
is O(min_rep). At any time, each entry imngoing_seq is associated with a distinct ending position.
When processing a match starting at positipat most one entry has ending position 1. The overall
complexity of Step 2(b) for a given symbéland a given periodis O(n, x min_rep).

As we explained before, at mostax _dis + [ + 1) subsequences arednlid_seq at any time. In turn,
it takesO(mazx_dis + 1) time complexity each time Step 3 is invoked. This brings totaltcomplexity of

O (ng x (maz_dis +1)). In summary, the overall complexity of the LSI algorithm #given symbol and
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period lengthl is

O (ng x (min_rep + max_dis + 1)) .

For a given period length the complexity to find the “longest” subsequence for all bgia is hence

O (Z ng % (min_rep + mazx_dis + l))
vd

which isO (N x (min_rep + maz_dis + [)) whereN is the length of the input sequence. Thus, the time

complexity to discover the “longest” single-symbol sulhsenge for all periods and symbols is
O (N X Ly X (min_rep + maz_dis + Lyaz))

whereL,,.. is the maximum period length. This is the worst case complesince the distance-based
pruning may prune a large number of symbol and period pdies;gal running time could be much faster.
In addition, we will propose several techniques that camcedhe time complexity of the LSI algorithm

in Section 6.4.

6.3.2 Space Complexity

There are two main data structures in L&kgoing_seq andwvalid_seq. For each symbal and a given
period length, the size obalid_seq is O(mazx_dis+ 1) whereas the size ehgoing_seq is bounded by,
since for each occurrence @fone new subsequence is inserteditgoing_seq. Furthermore, since each
entry ofongoing_seq has at mostuin_rep subsequences, the sizevafjoing_seq is O(min(nq, min_repx

[)). Therefore, the space complexity to find the “longest” sgbs@aces for all symbols and a given period

lengthl is
O ((maz_dis + 1) x Num_Symbols + min(N, min_rep x | x Num_Symbols))

whereNum_Symbols is the number of symbols in the input sequence. The overallespomplexity for

all possible period lengths is

O ((ma:v_dis + Linaz) X Num_Symbols X Lyaz +min(N X Lyaz, min_rep x L2, x Num_Symbols)) .

maxr

The above space complexity analysis is again a theoretmaidin the worst case; however, the space
requirement is much smaller in practice shown in Section Bis, in reality, all data structures can be

easily fit into main memory.
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6.4 Improvement of the Longest Subsequence Identificationlgorithm

The time complexity of the LSI algorithm can be improved figit One way is to use a queue to store
valid_seq and a heap to index all subsequencesdhd_seq according to theitotal_rep. Each time a
subsequence is inserted intalid_seq, it is added to the end of the queue. This would naturally make
all subsequences lie in the queue in ascending order oféhding positions. Thus, Step 1 can be easily
accomplished by dequeue obsolete subsequence(s) fronedldeoti the queue. Of course, each of such
operation would incuf)(log(max_dis + 1)) overhead to maintain the indexing heap. However, in virtue
of the heap indexing, each invocation of Step 3 only requir@sg(max_dis + 1)) time complexity for
period lengthl. Therefore, the overall complexity of LSI algorithm for akriod lengths and symbols is

reduced to

O (N X Ly x (min_rep + log(max_dis + L)) - 1)

6.5 Proof of Correctness

Lemma 6.1 The last segment of any invalid subsequence removedfigaing_seq is not extendible.

Proof. The only place we may remove an invalid subsequence éragning_seq is in Step 2(a). Assume
that the subsequence ends at positigh < 7 — 1). It must be true that no match starts on positicn 1°.

Thus, the last segment of the invalid subsequence is natdikie. O

Lemma 6.2 At least one prefix of each longest valid subsequence haspagémbothongoing_seq and

valid_seq.

Proof. Consider the starting position, sgyof a longest valid subsequeng&e All valid segments starting
before positionj — min_rep x [) have to end before positidii — maz_dis — 1). (Otherwise, a longer
valid subsequence can be formed by extendingbackwards” to include additional valid segment(s).
This contradicts the assumption thgtis the longest valid subsequence.) As a resuilt;d is empty at

positionj. Then a new subsequence (denotedystarting at positiory consisting of one match of the

5Otherwise, all subsequences in that entry would be extetadexd at positiork + {.
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pattern is added tongoing_seq. In addition,; is the starting position of a valid segment (because it is
the starting position o). By Lemma 6.1Y will stay in ongoing_seq until it grows to become a valid
subsequence (i.e., cumulates at leagt_rep repetitions). Whert” is extended to a valid subsequence
(denoted by?), Z will be replicated tavalid_seq because” is the longest one inngoing_seq. (All other

subsequences i going_seq start later thar¥.) Thus, this lemma hold$]
Lemma 6.3 After processing each match, all valid subsequences giving_seq is also invalid_seq.

Proof.  All valid subsequences inngoing_seq are generated in Step 2(b)i (some of which might be
removed immediately in Step 2(b)ii). The remaining one fiplcable) is then replicated imalid_seq
(Step 2(b)iii).O

By Lemmas 6.1 and 6.2, for any longest valid subsequendereitis fully generated and used to
updatelongest_seq or one of its valid prefix is removed fromulid_seq without being extended further.

Now, consider the processing of a mathstarting on position.

Lemma 6.4 After processing a match/ that starts at positiori, one of the longest valid subsequences

that end between positidi — max_dis — 1) and (i + [ — 1) is in valid_seq.

Proof. When processing a matcW at positionsi to (i + [ — 1), a valid subsequencE with ending
positionk (i — maz_dis — 1 < k < i — 1) may not be extended to includé¢ due to one of the following

two reasons.

1. £ =i— 1. X was removed fromngoing_seq in Step 2(b)ii because of the existence of another
valid subsequencE ending at positiort in ongoing_seq such that” dominatesX. Y is chosen to

be extended to includ®/ and to be retained inngoing_seq for potential further extension.

2. Otherwise, X is in valid_seq and is dominated by some other valid subsequéncde valid_seq,

which is extended to includ&/ and added intoengoing_seq (Step 3).

In summary, the only reason to stop extendigs thatX is dominated by some other valid subsequence
Y that is extended to includ&/ and resides imngoing_seq. By Lemma 6.3, all valid subsequences

in ongoing_seq 1S in valid_seq. Therefore, after processing each match, any valid suleseguending

24



between positiofi — max_dis — 1) and(i + | — 1) is either itself invalid_seq or is dominated by some
other valid subsequence imlid_seq. In other words, at least one of the longest valid subsemsetiat

end between positiofi — max_dis — 1) and(i + [ — 1) is invalid_seq. O

Lemma 6.5 After processing a match/ that starts at positior, one of the longest valid subsequences

that end prior to positior{i — max_dis — 1) is in longest_seq.

Proof. This proof is trivial because every time a subsequence i®vethfromuvalid_seq (due to an
obsolete ending position), thengest_seq is updated if necessaryl

The following theorem is a direct inference of Lemma 6.4 angl. 6

Theorem 6.6 After processing the entire sequenéengest_seq holds one of the longest valid subse-

guences.

7 Complex Patterns

After discovering the single patterns, valid subsequentefferent symbols may be combined to form
a valid subsequence of multiple symbols of the same periogl.el¥ploy a level-wise search algorithm,
which generates the subsequences gdtterns based on valid subsequence@ ef 1)-patterns with the
same period length. To efficiently prune the search spaceyssetwo properties: one is tlsymbol

property, and the other is tleegmentproperty.
Property 7.1 (Symbol property) If a pattern P is valid, then all of its generalizations are valid.

Property 7.2 (Segment property)lf D' = d;,d;11,d;4o, ..., ds is a valid segment for patterf?, then

D' is also a valid segment of all generalizationsfaf

Since these two properties are straightforward, we would tra proof. Based on these properties,
we can prune the candidates of a valid pattern efficiently. éxample, if two patterngd;, , x, *) and
(dy, %, %, x) are valid, then three candidate 2-patterns can be generfdeds, x, %), (di, *, dy, ) and

(dy, %, %, ds). As shown in Figure 9, all other 2-patterns of period 4 coitey d; andd, are equivalent to
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- dl d2 » » dl d2 =« L oo dl o+ d2 o+ dl ox a2« - - - - dl o x o« d2 dl o+ o« d2- - -

d2 » « di « d2 « d1
d2 « dl =
+dl . d2
(a) equivalent patterns of (d1, d2, *, *) (b) equivalent patterns of (d1, *, d2, *) (c) equivalent patterns of (d1, *, *, d2)

Figure 9: Equivalent Complex Patterns

one of these three patterns with a shifted starting posiamilarly, (d;, ds, d3, *) can become a candidate
3-pattern only if(dy, da, *, %), (dy, *, d3, ), and(dy, ds, *, ) are all valid.

After the candidate set of validpatterns is generated, then a similar algorithm to LS| ecexed to
verify whether these candidates are indeed valid patté&ss side product, the LSI algorithm also finds

the valid subsequence with the most repetitions for eadt pattern.

8 Discussion

8.1 Parameters Specification

In our approach, the mining results can be effected by thécehaf the two parametersiin_rep and
mazx_dis. When the parameters are not set properly, noises may bdiegias patterns. We use an
iterative method to set the proper value for these two patensieAfter discovering patterns for a given
pair of min_rep andmaz_dis, we prune those discovered patterns according to thetstatisignificance.
For example, if(a, *, %) is a discovered pattern and the expected continuous riepetit this pattern in a
random sequence exceeds thé_rep threshold, then we can conclude that this pattern may oaseir d
to chance and it should be discarded. Notice that there malgena uniform threshold ahin_rep and
max _dis for statistical significance since the probability of oceuce of two patterns may be difference.
For instance, the occurrence probability @f x, x) should be higher than that @i, b, ). After pruning, if
the number of remaining patterns is too small, and we carsatlja parameters afin_rep andmaz_dis,
e.g., reducingnin_rep or increasingnax_dis, and mine patterns again. This process terminates when

there is a sufficient number of patterns discovered.

26



8.2 Noises

There may be many types of noises in real applications. Trepatermax_dist is employed to recognize
the noises between segments of perfect repetitions of @pafhere may exist other types of noises, e.g.,
intra-pattern noise. Lefa, ¢, %, b, *, x,b) be a pattern. The segmentcbaaab may be the occurrence of
this pattern with some noise. (There is an extra symbol betwke last twas.) We can modify the
definition of asynchronous pattern slightly to recognizs thpe of noises. If a segment is very similar to
a pattern (within a certain degree), then we consider theneagas a repetition of the pattern. Without

major modification, our algorithm should be able to handig type of noise.

8.3 Extensions

In some application, e.g., sensor network, multiple evemy occur simultaneously. As a result, it is
possible that multiple symbols may occur in the same pasitibhin a sequence. The proposed approach
can be easily extended to handle this situation. We only teetbdify one step in our algorithm. When
generating candidates, we need to take into account alllpjessibsets of symbols at a time slot. For
example, if symbolsi, B occurred at the same time slot, then during candidate gemeghase, we need
to consider four possible candidates for this time dlat}, { B}, {A, B}, and{x}.

The other possible extension of the asynchronous pattéondiscover possible sequential rules, e.g.,
“ A is followed by B with a chance&0% in a given subsequence”. To find this type of sequential rtihes
minimum repetitions can be viewed as support. The asyncuopatterns discovered by our algorithm
can be considered as the patterns that satisfy the suppeshthid. In the post-process step, we can verify
whether the rules satisfy the confidence requirement. Thtgtize rule “A is followed by B with a chance
50%, then byC' with a probability75% in a given subsequence”, all three pattefasx, . ..), (b, x,...),
and(c, *, . . .) have to be valid for the a sufficient long portion of the segeeext, we can verify whether

the confidence requirement (e.50% and75%) is also satisfied.
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9 Experimental Results

We implemented the PatternMiner in C programming languagkitais executed on an IBM RS-6000

(300 MHz CPU) with 128MB running an AlX operating system.

9.1 Real Sequence

We first apply our model to a real trace of a web access log. ISs@web search engine specialized in
multimedia content search whose URL is “http://www.scoet”. Since early of 2000, the average daily
number of hits on Scour has grown over one million. A tracellofiiés on Scour between March 1 and
June 8 (total 100 days) were collected. The total numberadsses is over 170 million. Then the entire
trace is summarized into a sequence as follows. The traceided into 10 minute intervals. The number
of hits during each 10 minute interval is calculated. Fipalle label each interval with a symbol. For
example, if the number of hits is between 0 and 4999, thenintesval is labeled as, if the number of
hits is between 5000 and 9999, then this interval is labetdd and so on. The summarized sequence
consists of 14400 occurrences of 71 distinct symbols.

There exist some interesting patterns discovered by owrithgn. Whenmin_rep andmax_dis are
set to 4 and 200, respectively, there are overall 212 pat@istovered. The following is some example
of discovered patterns. There exists a patteyn §) in weekdays between 3am and 8:30am EST. Another
pattern ¢, ¢, ¢) occurs during 11am to 5pm EST weekday.

In the above experiment, the overall length of the sequecdatively short (14400), hence, all three
mining processes are done in less than 1 minute. To furthéerstand the behavior of our proposed
asynchronous pattern mining algorithm, we constructed limug synthetic sequences and the sensitive

analysis of our algorithm on these sequences is presentbd following section.

9.2 Synthetic Sequence Generation

For the purpose of evaluation of the performance of the FPeiftimer, we use four synthetically generated
sequences. Each sequence consists of 1024 distinct symudI20M occurrences of symbols. The

synthetic sequence is generated as follows. First, at thmtieg of the sequence, the period length
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of the next pattern is selected based on a geometric disbtbwith meany;. The number of symbols
involved in a pattern is randomly chosen between 1 and thegér The number of valid segments is
chosen according to a geometrical distribution with mgan The number of repetitions of each valid
segment follows a geometrical distribution with mean After each valid segment, the length of the
disturbance is determined based on a geometrical distsibutith meanu,. This process repeats until
the length of the sequence reaches 20M. Four sequencesrasrige based on values of, 1, i,
and y, in Table 1. In the following experiments, we always #gt,, = 1000 and for each period,

max_dis = 7%"‘18””.

Data Set| 1y | ps [r Hd

DS1 5 5 50 50

DS2 5 5 | 1000| 1000

DS3 | 100| 1000| 50 50

DS4 | 100| 1000| 1000| 1000

Table 1. Parameters of Synthetic Data Sets

9.3 Distance-based Pruning

In this section, we are investigating the effects of distabased pruning. Without the distance-based
pruning, there could be as many aS§ | x L,,,, different single pattern&d, «, ..., *) (Vd € ). Fig-

ure 10(a) shows the fraction of patterns eliminated by dtgbased pruning. It is evident that the num-
ber of pruned patterns is a monotonically increasing fmotif themin_rep threshold. With a reasonable
min_rep threshold, only a small portion of potential single patseneed to be validated and used to
generate candidate complex pattern.

Figure 10(b) shows the space utilized dygoing_seq andvalid_seq for all patterns in the LSI algo-
rithm. The real space utilization is far less than the thigcskbound shown in Section 6.3.2 due to the
following two reasons. First a large number of candidatégpas are pruned. (More than 90% as shown in
Figure 10(a).) Secondly, in the theoretical analysis, wester the worst case for the space utilization of

ongoing_seq, however, in reality, the space occupiedjoing_seq is much less than the theoretical bound.
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Figure 10: Effects of Distance-based Pruning
9.4 Pattern Verification

After the distance-based pruning, each remaining polesitigle pattern is validated through the LSI
algorithm. Since the validation process (even for a givetepa) is not a trivial task, in this subsection,
we demonstrate the efficiency of our LSI algorithm by compaguiit with a reasonable two stage (TS)
algorithm. In the TS algorithm, for a given pattern, all dediegments are first discovered, then all possible
combinations of valid segments are tested and the one vatmtst repetition is chosen. Figure 11 shows
the average elapse time of validating a pattern. (Note lea¥taxis is in log scale.) It is evident that LSI

can outperform the TS algorithm by at least one order of ntagairegardless thein_rep threshold.

9.5 Overall Response Time

Figure 12 shows the overall response time of PatternMingndiall patterns. The x-axis shows the value
of min_rep whereas the y-axis shows the overall response time of R&tieer. The higher thenin_rep
threshold, the shorter the overall response time. This imtrast to Formula 1 due to the effect of

distance-based pruning shown in Figure 10.
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Figure 11: LSI Algorithm vs. TS Algorithm
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10 Conclusion

In this paper, we propose a more flexible model of asynchrepeuodic patterns to mine patterns that are

of any length and may only be present within a subsequendeybhose occurrences may be shifted due
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to disturbance. Two parametersn_rep andmaz_dis are employed to specify the minimum number of
repetitions required within each contiguous segment depabccurrences and the maximum disturbance
allowed between any two successive valid segments. Up@fysat) these two requirements, the longest
valid subsequence of a pattern is returned. A two phaseitdgois devised to first generate potential
periods by distance-based pruning followed by an itergbrecedure to derive and validate candidate
patterns and locate the longest valid subsequence. Welagotkat this algorithm can not only provide
linear time complexity with respect to the input sequenogftle but also achieve space efficiency. This is

also demonstrated via the experimental results.
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