Mobile Security Catching Up?
Revealing the Nuts and Bolts of the Security of Mobile Devices

Michael Becher, Felix C. Freiling Johannes Hoffmann, Thorsten Holz, Sebastian Uellenbeck, Christopher Wolf
University of Mannheim, Germany Horst Gortz Institute (HGI)
Ruhr-University Bochum, Germany

Abstract—We are currently moving from the Internet society
to a mobile society where more and more access to information
is done by previously dumb phones. For example, the number
of mobile phones using a full blown OS has risen to nearly
200% from Q3/2009 to Q3/2010. As a result, mobile security
is no longer immanent, but imperative. This survey paper
provides a concise overview of mobile network security, attack
vectors using the back end system and the web browser, but
also the hardware layer and the user as attack enabler. We
show differences and similarities between ‘“normal” security
and mobile security, and draw conclusions for further research
opportunities in this area.

Keywords-mobile security; smartphones; survey

Introduction: Next to the aforementioned stealing of
private data, malware could also contain routines to capture
voice calls and to silently record any conversations which are
in range of the built-in microphone [53]. Depending on the
privileges the malware has, this might happen completely in
the background and will only be detectable by sophisticated
monitoring of the whole operating system or the generated
communication data. This type if eavesdropping is on a
different layer than the aforementioned type in Section V.

Financially Motivated Attackers: As already shown in
several papers [54]-[56], the business around malware got
highly financially motivated in the recent years. Shady busi-
nesses were built to generate a lot of money from (initially)
unaware victims. Not surprisingly, this trend has already
reached smartphone malware as there is a strong connec-
tion between the smartphone and the MNO through some
contract between the user and the provider in order to use
the supplied services. Albeit the payment is often done in a
flat rate model, some premium services are typically charged
separately (e.g., phone calls to special numbers or sending
of short messages to some special services). The abuse of
these services is ideal for attackers to generate money, e.g.,
through offering a highly charged service number for short
messages. An infected mobile device could covertly send
messages to this number until the user might be aware
of this situation on his monthly bill. One such malware
is the malware Trojan-SMS.AndroidOS.FakePlayer, which
pretends to be a movie player, but secretly sends messages
to a service number which are highly charged [57]. Another
way to generate money is to secretly redirect outgoing calls
through a provider that generate an additional charge. Of
course, this kind of MITM attack enables eavesdropping
of the affected calls. Proof-of-concept malware with this
behavior is evaluated by Liu et al. [58]. A third way to strip
the victim of his money is to blackmail him. Although not
yet seen on smartphones, one possibility is the encryption
of private files and the release of the used key after some
money has been paid (“ransomware”). An example of this is
the Gpcode-Trojan for desktop computers. Mobile malware
could set up similar extortion schemes, e.g., by disabling
certain services (such as email sending) on the mobile device
and only re-enable them (for a short amount of time) after
some payment has occurred (e.g., by sending a premium
short message to a number under the attacker’s control).

An important prospective question is the way criminals
earn money with mobile devices. Currently, premium-rate
services or foreign country calls are such a method. In
the future, smartphone-based payment systems could be
exploited as well. With an abuse database and by enforcing
this abuse database on a mobile device, we expect some of
the currently working methods to cease.

The challenge for mobile network operators is contribut-
ing to the cessation of the current potential to earn money
with exploiting mobile device security vulnerabilities, espe-
cially concerning premium services. Another challenge for
future research in mobile device security is identifying the
kind of successful attacks that cannot be solved with the
security entities that are presented in this paper.

Mobile Botnets: Infected mobile devices are ideal
remote controlled “machines”, e.g., within an established
botnet. The different communication channels offered by
smartphones enable much more (subtle) ways to control
these machines next to the traditional, IP-based control
structure of desktop malware. In addition, many smartphones
are always turned on in contrast to ordinary computers.
Singh et al. evaluated Bluetooth as the main command-and-
control infrastructure [59] and Zeng et al. focused on the
short message service [60]. Liu ef al. showed that even a very
small percentage of remote controlled mobile devices may
successfully perform a DDoS attack on 911 call-centers [58].
In general, the topic on botnets is out of scope of this paper,
but comprehensive literature exists [61], [62].

DoS Attacks Against Mobile Devices: Since mobile
devices are battery powered, a huge power consumption can
rapidly lead to the depletion of its power source. This can be
easily done by malware by using all available CPU cycles
for (junk) computations. A far more severe way to disable
the service of a mobile device is the deletion or corruption
of essential data stored at difficult to reach locations such
as the E?PROM. Fixing these issues is complex and often
even impossible for average users because repairing requires
fundamental knowledge of the device and can therefore often
only be done by the manufacturer himself.

B. SMS Vulnerabilities

An incident of the early times of mobile phones (not
even smartphones at that time) was an implementation bug
in the SMS parser of the Siemens S55: receiving a short
message with Chinese characters lead to a Denial of Service
(DoS) [63]. This bug required a local firmware update,
forcing the users to bring or send their device to customer
service. This class is expected to be of less importance
in the future, because modern smartphone architectures are
increasingly allowing local or remote firmware updates,
cf. Section II-C2.

A recent DoS attack is the “curse of silence” short
message, which was published in late 2008 [64]. It is caused
by an omitted sanity check of input data. Nokia published
a removal tool one month after the attack was made public.

C. MMS Vulnerabilities

In 2006, a remote code execution exploit for mobile
phones using MMS as the attack vector was published by
Mulliner [65]. It exploited a buffer overflow in the MMS
handling program of Windows Mobile CE 4.2. Being the

first of its kind, it supported the public fear of that time that
mobile devices would start to become commonly attacked.
The exploit received some attention by a technical audience
and the MNOs, who published patches for affected devices.
Anti-virus companies added the exploit to their signature
databases, but the exploit never appeared as part of mobile
malware and thus not much harm was caused by it.

There are two possible explanations for this. The first is
the probability of succeeding with the message because it
has to be guessed which memory slot is in use. A second
and more probable explanation is the actual code base of the
devices affected. In particular, Windows CE 4.2 was already
succeeded by Windows CE 5 at the time when the exploit
was published. Therefore, this vulnerability only affected
comparatively outdated devices.

D. Mobile Web Browser

Mobile web browsers are an emerging attack vector for
mobile devices. Just as common web browsers, mobile web
browsers are extended from pure web browsing software
to complete application frameworks with widgets or com-
pletely browser-based mobile devices We can expect that
even security-relevant functions of the operating system will
be accessible in the near future.

Industry requirements even include these security-relevant
features. One example are the browser requirements of
OMTP (Open Mobile Terminal Platform) [66]. More specif-
ically, BR-2540 requires: “The browser MUST support the
making of voice calls and video calls from a URI/IRI”.
BR-2570 suggests appropriate security mechanisms in the
implementation of this requirement as follows: “The browser
SHOULD ask for user confirmation before initiating any
call from a hyperlink”. Certain versions of the iPhone web
browser complies with this requirement, but they enable
browser-based dialers to create costs for the user without
necessarily asking for confirmation.

Therefore, the mobile web browser as an application
framework of its own is able to undermine the mobile
device’s security model: the original (and possibly secure)
model of signed applications is replaced by the security
model of the web browser developer. Examples for suc-
cessful attacks—besides DoS attacks on the mobile Internet
Explorer [67]—are the jailbreak of the iPhone, hacking the
Android browser, and using the iPhone browser as a dialer.

E. Mobile Malicious Software

Investigating the damage potential of mobile malicious
software is challenging today because this new kind of
malware has the potential to undermine the trust of mobile
phone users in their mobile telephony system as such.
Therefore, we see the main research tasks for mobile device
security in the attacks that can be committed by mobile
malicious software. Here the mobile device can be seen as
exhibiting arbitrary and possibly malicious behavior. We will

first present preliminary work and then introduce malware
detection mechanisms.

1) Surveys of Mobile Malware: This section provides in
chronological order an overview of important surveys of
mobile malware. Peikari presents an overview of Windows
Mobile and Symbian OS malware [68]. An extensive article
covering nearly all malware as of the time of its writing was
given by Shevchenko [69]. A book by Eren and Detken lists
known malware samples until 2006, surveys the weaknesses
of mobile operating systems, and describes much of the
mobile and the mobile device security knowledge of that
time [70]. Tyssy and Helenius list infection routes and
some examples of malware of the year 2006, but their
focus is on countermeasures and media perception of mobile
malware [71]. Bontchev notes mobile malware classification
problems and chooses Symbian OS malware as an exam-
ple [72]. Although not explicitly stated, his findings can be
generalized for malicious software on any operating system.
A survey of mobile malware is presented by Hypponen [5].
Besides a summary of mobile device security knowledge
of that time, it shows in an illustrative comic cartoon that
many repetitions of an installation attempt (via Bluetooth)
could even break down the resistance of a security-conscious
user. McAfee published a study in 2007 as a result of
surveying mobile network operators [73]. This survey shows
how MNOs start preparing defenses against mobile malware.
The most recent work on this topic as of the time of writing
is by Oberheide and Jahanian [8].

2) Malware Detection on Smartphones: Malware detec-
tion on smartphones is a difficult task. Although in principle
not different from malware detection on desktop computers,
the limited processing power of such devices poses a huge
challenge. We already outlined this in Section II-C3 and now
discuss several different malware detection strategies.

Signature Based Detection: This is the classic approach
when a malware is identified and its characteristics are
known. A signature may be generated and can thereafter
be used to detect this special type. Classical AV software
is signature based and works exactly this way on almost all
computers. However, we cannot simply port this approach to
smartphones. The main reason is that the matching algorithm
must be regularly active to scan all processes for suspicious
code. Obviously, this puts a heavy burden on the CPU and
might even be noticeable by the user (e.g., unresponsive
graphical interface or a faster battery exhaustion). To avoid
this, Oberheide er al. presented a virus scanner for mobile
devices which offloads the actual scanning to the cloud [74].
Furthermore, the experience on desktop computers shows
that signature based approaches are doomed to fail given
the large number of newly emerging threats.

Next to the “classical signatures” for AV scanners, static
function call analysis may provide clues about the intents of
the corresponding program. This is typically done once at
installation time for new programs. The used function calls

may be classified and, if necessary, appropriate actions can
be taken. This has been tested for the Android [75] and the
Symbian platform [76].

A proactive way to detect malware before it even gets the
chance to perform its malice intent is the way how Apple’s
App Store application vetting works. Each application that
is uploaded by its developers is checked before it can be
downloaded. Albeit the performed checks are unknown,
its aim is to detect malicious code and to withhold the
application if something suspicious is found. Since it is hard
to detect malicious code hidden somewhere deep in the code
path, some unwanted software slips through this mechanism
from time to time [15], [77].

Anomaly Detection: In contrast to signature based
detection approaches, anomaly detection techniques attempt
to detect malware with unknown behavior. One example
is SmartSiren, a tool developed by Cheng et al. [78].
SmartSiren is able to detect unknown malware based on
its communication behavior through Bluetooth and SMS.
Privacy conform data about these communication media is
sent to a central proxy which attempts to detect abnormal
behavior. This approach is able to detect fast spreading
worms and “slow working” malware, which collects private
data and forwards it from time to time in aggregated form.

Another example is the infrastructure presented by Por-
tokalidis et al. [79]. Here a “tracer” runs on the mobile
device and records all necessary information which is needed
by a “replayer” to playback the instruction trace on an exter-
nal virtual machine which represents a replica of the mobile
device. This approach also offloads expensive computation
to much more powerful computers in the cloud. This way,
off-site virus detection routines may be applied in addition
to complex, dynamic taint analysis, which may detect events
such as buffer overflows or foreign code execution.

A completely different approach is evaluated by Liu et
al. [80] and Kim et al. [81]. Since mobile devices have
comparatively small batteries, malware should be detectable
by the amount of battery power consumed by their conducted
instructions. If the running applications, the user behavior,
and the state of the battery is well known and precisely de-
fined, additional hidden (malicious) activity can be detected.
However, it is unclear and an open research question how
well malware can be detected on smartphones that is in daily
use, especially with continuously changing user behavior.

Rootkit Detection: Malware with high privileges may
attempt to hide itself at kernel level. The rootkit techniques
do not differ from ordinary computers and, hence, their
detection is to a certain extent identical—and therefore very
hard. A first rootkit for Android has already been presented
[82] and Bickford et al. evaluated rootkit detection on
mobile devices [83]. It is an open question how rootkits
on smartphones can be detected effectively and efficiently.

Software-based Attestation: Jakobsson and Johansson
describe an approach to retroactively detect any active

software based on memory printing [84]. The idea is to use
light-weight cryptographic constructions with the property
that it takes notably longer to compute a given function when
the performing algorithm is given less usable RAM than for
which it was configured. This approach is suited to detect
software that wants to hide its presence on mobile devices.
Active malware, whose memory is swapped out to much
slower (Flash) memory during execution, will experience
a huge latency penalty which is measurable. This makes
active malware detectable through either observed memory
changes or especially due to timing discrepancies when the
malware attempts to evade detection during attestation by
computing the expected result for the attestation.

F. Operating System Protection

Because smartphones deal with broader and broader ap-
plication domains, their operating system and their programs
become comparable to desktop computers. Both systems
share the same architecture and in many cases even the exact
same technologies, e.g., the operating system or web browser
back end. Thus, their security can be tightened with the same
technologies. We now focus on some ways to enhance the
security of smartphone operating systems.

Limited privileges and process isolation: Exploited
applications may run foreign code within the boundaries
of their given privileges. Higher privileges endanger the
whole system and are often not necessary for the vast
majority of applications. Smartphone applications should be
run with the same principles in mind as their counterparts
in ordinary computers. A good example is the Android
platform, where applications run with different UIDs and
are further separated through their own JVMs. Virtualization
in general may enhance the overall security of smartphones
(e.g., separated VMs for private and work-related tasks), but
currently there is no (hardware) support for this yet.

Hardened Kernels: Ordinary computer operating sys-
tem kernels and utilities constantly raise the stakes to execute
foreign code through critical security bugs. These techniques
should also be used at the heart of smartphone operating
systems and include Address Space Layout Randomiza-
tion, stack protection and non-executable writable memory.
Mandatory Access Control lists may further enhance overall
smartphone security. It is ongoing work to enable all these
techniques on the different platforms.

Sane Default Settings: Smartphone services and appli-
cations should have sound default configurations and should
only run when their services are required. One such example
is Bluetooth connectivity. Another is shown by Habib et
al. [85], where some Symbian based smartphones are prone
to DoS attacks in their default configuration via a network
service that is reachable by default. To our knowledge, such
an evaluation has not been done except for Windows Mobile
and Symbian platforms.

Updates: The more people work in the area of smart-
phone security, the more likely it is that (security) bugs will
be found. In order to close the corresponding emerging secu-
rity holes, applications and operating systems need to be up-
dated. This has to been done in an easy and straightforward
fashion, as common users are not interested nor motivated
in long update procedures because of their missing security
understanding, cf. Section VII. Better update procedures are
an open research question. A challenge for future offensive
research can be the abuse of firmware flashing functionality,
which leads to more subtle attacks. However, note that this
kind of attacks might be detected successfully.

Software Attestation: A feature of smartphones is the
ability to install all kinds of (closed source) 3™-party soft-
ware. Those applications may contain unwanted routines
which are very hard to detect. One example is the previously
mentioned private data stealing routine in a game. The
Android OS allows to see which capabilities (Internet-
access, send/receive SMS, ...) an application requests dur-
ing install-time and to eventually deny them. Sadly, this is
an all-or-nothing decision. Either the application is installed
and may anytime make use of the granted capabilities, or it
is not installed and therefore not usable. But even an unsus-
picious looking weather application which requests forecasts
over the Internet connection and which might automatically
retrieve updates based on the current location (which is
known through the embedded GPS sensor) is perfect to
spy on the user. In order to detect such unwanted behavior,
some research has been done on this topic. Kirin [86] is a
framework for Android which decides on the basis of the
stakeholders’ policy invariants which application requests
are granted or denied. Ongtang et al. developed SAINT, a
modified infrastructure for Android which assigns permis-
sions during install-time for run-time access to or communi-
cation between applications [87]. Another proposed Android
security tool is SCanDroid [88], which may automatically
detect unwanted information flows in applications based on
the requested capabilities. The downside of this approach
is that the source code is required and that it is solely for
analysis purposes as no intervention is possible.

Complementary approaches are TaintDroid [89] and
PiOS [90]. Both systems perform dynamic taint analysis and
are able to reveal hidden and possible unwanted information
flows of private data. These tools do not need the source code
for their operation, but work on the binary level. A related
issue is the ongoing challenge of application revocation of
mobile device applications [15].

G. Limited Graphical User Interface

We will now look into two challenges concerning the
user interface of mobile devices. First, it is possible that
the user interface does not display the message that the
program or the operating system intended to. Examples are
APIs for dialog boxes that accept strings of arbitrary length

for the message to be displayed. Niu et al. presented some
phishing techniques based on these inadequatenesses [91].
Second, and even more challenging, is malware that is able
to simulate user actions, e.g., by automatically reacting to
security confirmations. Some desktop computer operating
systems provide APIs for this task and it can be imagined
that mobile operating systems will provide this functionality
in the future. It becomes even more intriguing in combina-
tion with malware that rewrites some parts of the OS.

A first solution to these problems is the introduction of
Turing tests (CAPTCHASs) for every security-relevant event
on the mobile device in order to prove that an event was
confirmed by a human user. The task for future research
could be to explore the portion of security problems that
remain when this solution is applied. An additional question
lies in the area of human computer interaction (HCI) design:
enough to be of use, but not so much so that it becomes a
burden.

VII. THE USER AS ATTACK VECTOR

Many studies have been performed to evaluate the security
knowledge of the average user. Most of them show what
already the well-known study of Whitten and Tygar [92]
found out: normal users are not able to use security mecha-
nisms correctly. Several attempts have been made to simplify
the security interface for users, but even the very simple
Windows security slider with only four possible positions
was not completely understood and therefore wrongly set
by users who rated themselves as IT proficient [93].

Therefore, we need to ask ourselves the purpose of these
numerous security mechanisms if the user does not under-
stand them. And even if he understands to work with one
specific mechanism, another mechanism might be difficult
to grasp for him. People working in security do want to
achieve the desirable goal of more security-aware users, but
for the vast majority of users, their will, their interest, and
in particular the time they can devote to learn more than one
security mechanism, is likely to be limited.

Security and usability started out of general research on
HCI. We can trace it back to the famous study by Whitten
and Tygar in 1999 [92] and observe that it gained attention in
subsequent years [94], [95]. User studies regularly show that
security mechanisms are neither understood nor correctly
used by most of their users [92], [93], [96], [97]. In addition,
some authors propose to embed security in products [98]
and in the development process [99] rather than having it
stand-alone. Usability heuristics have been developed by
Nielsen [100] and Shneiderman and Plaisant [101]. They
are a good starting point for usability of security solutions.

Making our scope a bit broader, we also have to see the
administrator or security professional as a possible attack
vector: new and changing environments, poorly documented
hard- and software, and interplay of components which were
not developed to work together, offers very interesting—but

also challenging—questions. Wrong decisions on the secu-
rity professionals side will have very drastic consequences.
It would therefore be very helpful for them to have access
to some guidelines specific to mobile security, even going
down to the level of comparing currently available solutions
(both open and closed source). To the best of our knowledge,
there is no such tool yet, leading to another open research
question.

VIII. CONCLUSION

In summary, smartphones are rapidly closing the gap to
ordinary computers in terms of processing power, display
size, and versatility of operating systems. However, they
have inherent constraints that will remain valid in the future.
There is much evidence, that indeed we are at the beginning
of an era of attacks against smartphones. In any case,
research in mobile security will be an interesting area in
the years to come.

Acknowledgments: This work has been supported by
the Ministry of Economic Affairs and Energy of the State
of North Rhine-Westphalia (grant 315-43-02/2-005-WFBO-
009), the Federal Ministry of Education and Research (grant
01BY1020 — MobWorm), and the DFG (Emmy Noether
grant Long Term Security). We also thank the anonymous
reviewers for their valuable insights and comments.

REFERENCES

[1] N. Leavitt, “Malicious Code Moves to Mobile Devices,”
IEEE Computer, vol. 33, no. 12, 2000.

[2] S. N. Foley and R. Dumigan, “Are Handheld Viruses a
Significant Threat?” Commun. ACM, vol. 44, no. 1, 2001.

[3] D. Dagon et al., “Mobile Phones as Computing Devices: The
Viruses are Coming!” IEEE Pervasive Computing, vol. 3,
no. 4, 2004.

[4] N. Leavitt, “Mobile Phones: The Next Frontier for Hack-
ers?”” IEEE Computer, vol. 38, no. 4, 2005.

[5] M. Hypponen, “State of Cell Phone Malware in 2007,” 2007,
http://www.usenix.org/events/sec07/tech/hypponen.pdf.

[6] J. Kleinberg, “The Wireless Epidemic,” Nature, vol. 449,
no. 20, Sep. 2007.

[71 G. Lawton, “Is It Finally Time to Worry about Mobile
Malware?” IEEE Computer, vol. 41, no. 5, 2008.

[8] J. Oberheide and F. Jahanian, “When Mobile is Harder Than
Fixed (and Vice Versa): Demystifying Security Challenges in
Mobile Environments,” in Workshop on Mobile Computing
Systems and Applications (HotMobile), February 2010.

[9] M. Kotadia, “Major Smartphone Worm ’by 2007°,” Jun.
2005.

[10] V. Bontchev, “Virusability of Modern Mobile Environ-

ments,” in Virus Bulletin Conference, Sep. 2007.

[11] Gartner Research, “Gartner Says Worldwide Mobile Phone

Sales Grew 35 Percent in Third Quarter 2010; Smartphone

Sales Increased 96 Percent,” 2010, http://www.gartner.com/

it/page.jsp?id=1466313.

[12] A. Portnoy, “Pwn20wn 2010,” 2010, http://dvlabs.

tippingpoint.com/blog/2010/02/15/pwn2own-2010.

[13] M. Keith, “Android 2.0-2.1 Reverse Shell Exploit,” 2010,

http://www.exploit-db.com/exploits/15423/.

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]
(23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]

R.-P. Weinmann, “All Your Baseband Are Belong To

Us,” hack.lu, 2010, http://2010.hack.lu/archive/2010/
Weinmann- All- Your- Baseband- Are-Belong-To-Us-slides.

pdf.

A. Greenberg, “Google pulls app that revealed Android

flaw, issues fix,” 2010, http://news.cnet.com/8301-27080

3-20022545-245 .html.

P. Zheng and L. M. Ni, “The Rise of the Smart Phone,”
IEEE Distributed Systems Online, vol. 7, no. 3, 2006.

S. C. Guthery and M. J. Cronin, Developing MMS Ap-

plications - Multimedia Messaging Services for Wireless
Networks. McGraw-Hill Professional, Jun. 2003.

D. Barroso, ‘“ZeuS Mitmo: Man-in-the-mobile,”
September 2010, http://securityblog.s21sec.com/2010/
09/zeus-mitmo-man-in-mobile-i.html.

OMTP Limited, “Advanced Device Management,” Jan.
2008.

, “Mobile Application Security - Requirements for
Mobile Applications Signing Schemes - Version 1.23,” Dec.
2006.

M. Becher, “Security of smartphones at the dawn of
their ubiquitousness,” Ph.D. dissertation, University of
Mannheim, Oct. 2009.

Bladox, s.r.o., “Turbo SIM,” http://www.bladox.com/.

J. Berka, “Turbo SIM add-on allows full iPhone unlock-
ing,” Aug. 2007, http://arstechnica.com/apple/news/2007/08/
turbo-sim-add-on-allows-full-iphone-unlocking.ars.

OsmocomBB project, “SIMtrace,” http://bb.osmocom.org/
trac/wiki/SIMtrace.

OMTP Limited, “Advanced Trusted Environment - OMTP
TR1,” May 2008.

University of Glamorgan, “Disk Study 2008-2009,”
May 2009, http://isrg.weblog.glam.ac.uk/2009/5/7/
disk-study-2008-2009.

F. C. Freiling et al., “Reconstructing people’s lives: A case
study in teaching forensic computing,” in Conference on IT-
Incidents Management & IT-Forensics - IMF, 2008.

E. Barkan et al., “Instant Ciphertext-Only Cryptanalysis of
GSM Encrypted Communication,” J. Cryptology, vol. 21,
no. 3, 2008.

J. Frick and R. Bott, “Method for identifying a
mobile phone user or for eavesdropping on outgo-
ing calls,” http://v3.espacenet.com/publicationDetails/biblio?
CC=EP&NR=1051053&KC=&FT=E.

OsmocomBB project, “OpenBSC,” http://openbsc.osmocom.
org/trac/.

OpenBTS, “GSM. Simplified.” http://openbts.sf.net/.

E. Biham er al., “A Related-Key Rectangle Attack on the
Full KASUMI,” in ASIACRYPT, 2005.

W. Enck et al., “Exploiting Open Functionality in SMS-
capable Cellular Networks,” in ACM Conference on Com-
puter and Communications Security (CCS), 2005.

J. Serror et al., “Impact of Paging Channel Overloads or
Attacks on a Cellular Network,” in ACM Workshop on
Wireless Security (WiSe), 2006.

