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ABSTRACT 

e is an aspect-oriented hardware verification language that is 

widely used to verify the design of electronic circuits through the 

development and execution of testbenches. In recent years, the 

continued growth of the testbenches developed at Infineon 

Technologies has resulted in their becoming difficult to 

understand, maintain and extend. Consequently, a decision was 

taken to document the testbenches at a higher level of abstraction. 

Accordingly, we attempted to model our legacy test suites with an 

existing aspect-oriented modelling approach. In this paper we 

describe our experience of applying Theme/UML, an aspect-

oriented modelling approach, to the representation of aspect-

oriented testbenches implemented in e. It emerged that the 

common aspect-oriented concepts supported by Theme/UML 

were not sufficient to adequately represent the e language, 

primarily due to e’s dynamic, temporal nature. Based on this 

experience we propose a number of requirements that must be 

addressed before aspect-oriented modelling approaches such as 

Theme/UML are capable of representing aspect-oriented systems 

implemented in e.  

Categories and Subject Descriptors 

D.3.3 [Programming Languages]: Language Constructs and 

Features; D.2.10 [Software Engineering]: Design; D.2.2 

[Software Engineering]: Design Tools and Techniques 

General Terms 

Design, Languages, Verification 

Keywords 
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1. INTRODUCTION 
Infineon Technologies [1] offers semiconductors and system 

solutions for automotive, industrial electronics, chip card and 

security domains, as well as applications in communications.  

These products are based on development of innovative analog 

and mixed signal, radio frequency, power and embedded control 

technologies. The company currently holds approximately 22,900 

patents related to these technologies.  

Specman is an aspect-oriented hardware verification tool 

employed by Infineon to verify the design of electronic circuits. 

Specman testbenches are written in an aspect-oriented language 

called e. e is primarily used by Infineon to construct testbenches 

that inject stimuli into a hardware design and check for valid 

actions/responses. The continued growth of the testbenches in 

recent years has raised the issue of how to maintain and reuse 

legacy test code as it increases in complexity. Testbenches are 

reused across multiple projects, with different aspect-oriented 

extensions being added on a per-project basis. When attempting to 

adopt a legacy testbench written by another developer, the number 

of aspect-oriented extensions makes it difficult to determine 

exactly what behaviour has been defined, particularly when 

individual methods can be extended and overwritten in different 

sub-types. To compound this problem, knowledge of the part-

iculars of each project-specific design is partially or completely 

lost as people move out of Infineon. It was decided that using a 

high-level, graphical design language to visualise the testbenches 

would speed up knowledge transfer and project understanding, 

and thereby aid with maintaining and reusing existing code.  

UML was initially used to model the testbenches, but we found 

that the object-oriented concepts embodied in UML did not map 

to e’s aspect-oriented concepts. Subsequently, an aspect-oriented 

extension to UML was adopted. This paper describes our 

experience with attempting to model Infineon’s testbenches with 

an established aspect-oriented modelling approach called 

Theme/UML [2]. We found that while the common aspect-

oriented notions supported by Theme/UML were a better fit with 

those in e than the object-oriented notions in UML, there were 

still a number of issues that prevented us from successfully 

modelling the testbenches. These issues were primarily related to 

e’s support for dynamism and temporality - concepts not 

commonly supported in aspect-oriented software development 

techniques. This situation was exacerbated by a misalignment 

between e’s basic units of decomposition and those generally used 

in aspect-oriented languages. The result of this experience, and 

the contribution of this paper, is a set of requirements for future 

aspect-oriented modelling approaches.  

The remainder of this paper is structured as follows. Section 2 

introduces the e language and discusses its support for aspect-

oriented programming. Section 3 discusses our experience with 
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attempting to model testbenches written in e with Theme/UML. 

Section 4 proposes a set of requirements for aspect-oriented 

modelling approaches that arose from the work described in 

Section 3. Section 5 contains a summary.  

2. THE e PROGRAMMING LANGUAGE 
e is a domain-specific programming language that is used for 

functional verification of electronic designs. The language was 

developed in 1997 by Verisity Design (subsequently acquired by 

Cadence Design Systems [3]) as part of their Specman tool and 

from its inception contained constructs supporting aspect-oriented 

programming. e was standardised as IEEE 1647 [4] and a second 

revision of the standard was published in 2008. In this section we 

introduce the e language by describing its key concepts and 

examining its aspect-oriented features.  

At e’s core is a pseudo-random generator that facilitates creation 

of input stimuli that can be applied to the design under test 

(DUT). All variables are assigned a random value unless either 

marked as not generatable or constrained to be a specific value. e 

contains constructs that allow the response of the DUT to be 

monitored and checked. In addition, there are constructs to 

support assessment of the functional coverage of the DUT (as 

opposed to simply the code coverage). 

A typical electronic design consists of a processor, peripherals 

and connecting busses, all of which are usually verified 

individually before being tested together. The individual 

peripherals are verified in their own testbenches using e-

Verification Components (eVCs). eVCs are testbench elements 

written in e that encapsulate a protocol or some specific behaviour 

and are used to stimulate the design, test the response and 

measure whether certain state combinations and system responses 

have been observed, i.e., assess the functional coverage. The most 

common type of eVC is one targeted at a specific bus protocol, 

and contains a bus master to generate stimuli, a bus slave to 

receive responses from a DUT master, a bus arbiter to control the 

system, protocol checkers to ensure that the correct bus behaviour 

is observed at all times, and a scoreboard to check for end-to-end 

data transmission correctness throughout the system. 

In providing support for the development of such testbenches, e 

brings together concepts from several languages: 

• It has a basic object-oriented programming model with 

automatic memory management and single inheritance 

in a similar manner to Java. 

• e natively supports aspects that can cut across multiple 

objects within an e domain. 

• e supports constraints as object features, using 

constraints to refine object models. The execution 

model resolves the constraints, picking random values 

that satisfy the constraint set. 

• e is strongly typed, like Pascal. 

• e has concurrency constructs for hierarchical 

composition, similar to hardware description languages 

such as Verilog and VHDL. 

• e contains temporal logic constructs that borrow from 

linear temporal logic and interval temporal logic. 

e supports aspect-oriented programming through two main 

mechanisms, one for objects and one for methods. Unlike object-

oriented languages such as Java, e does not have classes, but 

instead has units and structs. Units represent objects that exist 

throughout the simulation time, e.g., bus masters and slaves. 

Structs represent objects that are created and destroyed during 

simulation time, e.g., bus data packets that are passed between 

agents in a system.  

Both units and structs can have aspect-oriented extensions applied 

to them in the same manner through the use of the extend 

construct. This is similar to the concept of inter-type declarations 

in AspectJ. The extend construct adds code to an existing 

module in an aspect-oriented manner (as opposed to creating a 

new module as per standard inheritance, which is achieved in e 

using the like keyword). Listing 1 illustrates a simple example 

of how a unit and a struct can have aspect-oriented extensions 

applied to them. An empty object is defined in each case. The 

base object is extended by adding a new variable to the object. 

The same mechanism can be used to extend types. Types are used 

to represent data, are globally visible, and can be user-defined 

enumerated variables as well as the pre-defined numerical and 

Boolean types common to most languages. The type extension 

mechanism is illustrated in Listing 2 where an extra type is added 

to dog_type (which is a collection of possible dog types).   

 

Listing 1. Unit and struct extension 

 

Listing 2. Type extension 

Method extension is handled via three aspect-oriented constructs, 

is also, is first, and is only. Consider the following 

methods: 

(a) bark() is {out(“Bark!”)}; 

(b) bark() is first {out(“1st message”)}; 

(c) bark() is also {out(“Last message”)}; 

(d) bark() is only {out(“Miaow!”)}; 

(a) is the original method declaration and prints the message 

“Bark!” when executed. When (a) and (b) are deployed together, 

two messages are printed - first “1st message” and second “Bark!”. 

If (c) is also active then three messages are printed, with “Last 

message” printed last. However, if (d) is loaded after (a), (b) and 

(c), the is only construct dictates that all previous definitions 

are ignored and the latest definition becomes the one that is used. 

In this case the only message printed is “Miaow!”. 

As illustrated in Listing 2, the original dog_type type had two 

concrete types, and the aspect extension adds a third type to the 

list.  Aspect-oriented method extensions can be applied to both 

unit base_unit { }; 
extend base_unit { 
    a : unit; 
};           
 
struct base_struct { }; 
extend base_struct { 
    b : bool; 
} 

     

type dog_type : [poodle, bulldog]; 
extend dog_type : [pug]; 



existing and newly created types. Listing 3 illustrates how 

different types can have different behaviours based on aspect-

oriented method extensions. In this way complex layers of aspects 

can be introduced to the system to change the observed behaviour. 

 

Listing 3. Aspect extensions within polymorphic extensions 

e also supports aspect-oriented extension of temporal events and 

coverage objects in a similar way to how it handles method 

extension. A temporal expression is a combination of events and 

temporal operators that describe behaviour, temporal relationships 

between events, field values, variables and other items during a 

test. An event may be emitted during execution of a method either 

by directly invoking emit event or because a signal to which 

the event is tied has changed. For example, event a is 

rise('clk')@sim is an event that is true if the signal clk 

within the DUT rises on a simulator tick. Because of the use of 

is, an event can be extended using the is only extension (is 

first and is also are not supported for temporal events). 

Consequently, a new aspect could be created in order to redefine 

event a, e.g., event a is only fall('clk')@sim. This 

action results in event a looking for the falling edge of clk at 

sim rather than the rising edge. 

Coverage objects, triggered by specific events, are used to collect 

functional coverage information about key architectural and 

micro-architectural features of the DUT. Listing 4 illustrates the 

syntax of a coverage object.  

 

Listing 4. Coverage object syntax 

If a coverage object has been defined, new objects can be added 

using the is also extension. The <options> field in the 

cover object definition allows further constraints to be added. A 

typical use of this facility is to add constraints that restrict 

evaluation of the coverage object to times when certain conditions 

hold. For example, the statement when=FSM==idle restricts the 

evaluation of the coverage object to times when the finite state 

machine has the value idle at the time the coverage event 

occurs. The options can also be extended, giving the user the 

ability to extend the coverage object within an aspect, as 

illustrated by example in Listing 5. 

  

Listing 5. Aspect extension of coverage objects 

The example shows that the cover group1 barking is triggered 

when the barking event is observed and the dog_kind is 

recorded. The extension adds a restriction to this, only allowing 

the evaluation to occur when the variable weight is greater than 

50. This type of extension can be performed on coverage objects 

as well as cover groups. The extension differs from the others 

described previously in that the extension itself can contain a 

constraint on when it is executed, allowing different aspects of the 

same object to record different ranges of information. It can only 

be performed on cover objects. 

In the next section we discuss our experience with attempting to 

model testbenches written in e with Theme/UML, a UML-based 

aspect-oriented modelling language. 

3. MODELLING HARDWARE VERIFIC-

ATION CONCERNS SPECIFIED IN e 
UML is a general-purpose, language-independent modelling 

approach that is widely used to design object-oriented systems. 

We initially attempted to model our testbenches using UML but 

found that it lacked support for the aspect-oriented features of e. 

We subsequently investigated existing aspect-oriented modelling 

approaches and decided to attempt to model our testbenches with 

Theme/UML. Theme/UML is an aspect-oriented extension to 

UML that supports fine-grained decomposition and composition 

of both functional and non-functional concerns, including those 

that are crosscutting. Theme/UML proved a better fit than 

standard UML to the aspect-oriented constructs in e. However, 

there were a number of instances in which Theme/UML could not 

adequately capture behaviour that can be specified with e. These 

issues arose primarily due to the dynamic, temporal nature of e.  

 

Figure 6. Theme/UML representation of is also 

3.1 Aspect-Oriented Type Extension  
Figure 6a illustrates the Theme/UML design of an aspect theme 

and a base theme. The aspect theme, called AspectA, is designed 

so that the crosscutting behaviour contained in the method 

extsnA() is executed after any method from the base system 

(represented in this example by method() in the base theme 

bound to the aspect). The result of composing the aspect with the 

                                                                 

1 A cover group contains one or more coverage objects. 

cover barking is { 
   item dog_kind; 
}; 
 
cover barking using is also when =   
   weight > 50{}; 

unit dog { 
    dog_kind : dog_type; 
    bark() is empty; 
 
    when pug dog {bark() is also  
        (out("I am a Pug"))}; 
    when poodle dog {bark() is also 
        (out("I am a Poodle"))}; 
}; 
 

cover <event>[using <options>] is [also] { 
 item name [:type=expr] [using <options>] 
}; 



base is shown in Figure 6b, where the crosscutting behaviour 

executes after the base method. This example shows how 

Theme/UML can be used to graphically represent e’s is also 

extension. The is first and is only extensions can be 

modelled in a similar fashion.  

However, handling type extension is more problematic. One 

possible way of handling type extension is to have a base class 

that is extended to create a new class, e.g., we could create a base 

class called dog and a child class pug that is a specialisation of 

dog. However, in e the child class does not exist until it is 

generated at runtime, and it is not guaranteed that it will be 

generated, i.e., it would be possible to constrain the environment 

to only generate poodles and bulldogs, in which case although the 

possibility of a pug exists, it is never realised. It is difficult to 

graphically express this concept in Theme/UML due to its 

foundations in UML and the misalignment between the object-

oriented concepts in UML and the dynamic, aspect-based module 

creation in e. An attempt can be made using sequence diagrams as 

they have the ability to represent object creation over time with 

lifelines. However, behaviour described with sequence diagrams 

become difficult to visualise and understand as designs grow and 

aspect-oriented extensions are added. Development of a domain-

specific modelling language to explicitly address these issues (and 

the others mentioned throughout this paper) would be superior to 

the continued use of UML-based approaches to model e. 

3.2 Language Dynamicity and Constraints 
UML is best suited to modelling static languages, i.e., those in 

which all variable types are known at compile time. This raises 

questions about how Theme/UML models can cater for e’s 

dynamic language constructs. To model the dog example from 

listings 2 and 3 we could have a dog generator that creates dog 

structs, and so might have multiple copies that are created and 

destroyed during the program execution. However, we might also 

have a constraint that says keep dog_kind in 

[poodle,pug], meaning that a bulldog can never be created 

although the code for it exists. Formal constraints can be added to 

variables via the Object Constraint Language (OCL), but we 

found we could not model constraints that are modified via aspect 

extension.  

 
Listing 6. Aspect-oriented code extension 

Listing 6 illustrates how constraints can be extended via aspects. 

The soft constraint restricts the bark_type to only be yelp 

and growl. Soft constraints can be overridden at any time, 

although the constraint engine will try to satisfy soft constraints if 

they overlap with hard constraints. For the extended poodle 

dog, the bark_type is constrained further via an aspect. 

Graphical representation of this form of constraint extension is not 

catered for in UML. 

Furthermore, different constraints can interact to reduce the 

allowed state space, and may even contradict. As constraints can 

be statically analysed, it should be possible to highlight possible 

contradictions within UML by indicating how each constraint 

reduces the range of allowed possible values for the variable in 

question. A constraint set might allow a bulldog to be generated at 

certain times, but not at others, but we found it is not possible to 

describe temporally conditional existence with UML. 

3.3 Timed Behaviour 
The next question is how to represent a) timed methods that are 

tied to an event or clock to synchronise their execution b) 

temporal expressions that can be events or temporal checks and c) 

coverage objects. We found that it is possible to treat all of these 

as different types of method, as they have to be instantiated within 

a unit or struct. An event is a method that raises a flag when the 

event is emitted or when a sequence of other events is observed. A 

temporal expression is a piece of Boolean logic that evaluates to 

true or false and again raises a flag – a false for the entire 

expression is observed as a fail, whereas a true is observed as a 

pass. Coverage objects are also methods that increment counters 

for coverage purposes.  

However, the main problem with modelling time constructs is that 

UML does not cater for real-time by default, making it difficult to 

model the difference between a standard method, e.g., 

method(), and a timed method, e.g., method()@clock, both 

of which are treated differently in e. Although a number of real-

time extensions for UML have been proposed [5, 6], Theme/UML 

does not currently support design of real-time behaviour and 

therefore it was not possible to adequately model e’s time 

constructs. However, even in the case that a real-time profile for 

UML had been adopted, we would still have faced challenges 

when attempting to model e’s aspect-oriented behaviour. For 

example, the temporal behaviour of a method can be modified via 

an aspect by either changing the event to which the method is 

synchronised or by changing the code within a method. 

Additionally, e enforces different extension rules depending on 

which construct is being extended. For example, is only 

extension is not allowed for cover objects, but is allowed for 

methods. These behaviours are not supported by standard real-

time profiles for UML.  

3.4 Tool Support 
From a more practical perspective, an additional problem is that 

aspect-oriented modelling is not currently supported in any of the 

commercial modelling tools that Infineon might use. The 

Theme/UML diagram presented in Figure 6 was created manually 

in a graphics package. Consequently it is not possible to load up 

an entire e environment and visualise it graphically with a tool 

that provides the quality guarantees that a large organisation 

requires. Tool support for Theme/UML has been developed 

recently and is described by Carton et al. in [6].  However, this 

tool supports standard Theme/UML and therefore cannot fully 

model e systems due to the issues discussed throughout this 

section.  

4. REQUIREMENTS FOR ASPECT-

ORIENTED MODELLING APPROACHES 
In this section we present some requirements for aspect-oriented 

modelling approaches based on our experience with attempting to 

type bark_type : [yelp, growl, howl]; 
type dog_kind : [poodle, pug, bulldog]; 
 
struct dog { 
   bark : bark_type; 
   dog_kind : dog_kind; 
   keep soft bark_type in [yelp,growl]; 
}; 
 
extend poodle dog { 
   keep bark_type=yelp; 
}; 

 



model e using aspect-oriented extensions to UML. These are 

requirements that must be addressed if an aspect-oriented 

modelling approach wishes to support representation of hardware 

verification testbenches.  

4.1 Visualising Aspect Interaction 
The standard aspect development approach at Infineon involves 

endeavouring to group all related behaviour for a given aspect 

into one file, and creating a new file for each new extension to the 

original aspect (especially when reusing an existing piece of 

verification intellectual property). With a number of files under 

consideration, very different behaviour can occur depending on 

the order in which the files are loaded. Consider the example in 

Listing 7. If file A is loaded, followed by file B and file C, and 

method() is invoked, the message “I am C” is printed. If file A 

is loaded, followed by file C and file B, and method() is then 

invoked, two messages are printed, “I am C” followed by “I am 

B”. The order in which sub-types are defined, extended via 

aspects and resolved at runtime also impacts program execution.  

 

Listing 7. Extended e code in three files 

The effect of load order is extremely important, and leads to one 

of the biggest headaches with aspect-oriented programming in e – 

debugging. When trying to find the exact piece of code to modify, 

the developer has to bear in mind that it may have been extended 

via aspects in several places, and previous extensions might have 

been completely overridden by new is only extensions. Conse-

quently, carefully inserted debug messages can be completely 

ignored due to an unknown override.  

We believe that in order to address this issue, a means of 

visualising an aspect-oriented system and how the aspects interact 

and resolve themselves is required. The modelling technique 

could be three-dimensional, with a time axis showing the effect of 

loading in different aspects at different times. This would allow 

the user to view the interaction effects of different aspect 

extensions as they are applied, and thereby get a greater 

understanding of the effects of load order on the resulting system.  

4.2 Legacy System Support 
Any modelling language adopted by Infineon must be able to 

support representation of legacy systems. We have been using the 

e language for eight years and our most significant problems 

concern support of our legacy systems. eVCs are typically written 

by small teams who may no longer be in the company or might 

not be available when necessary. These eVCs are imported into 

larger environments to test modules such as memory controllers. 

A memory controller is connected to a bus driven by an eVC, and 

to various memory models connected via call-backs to the e 

testbench so that both end-to-end scoreboarding and functional 

correctness assessment can be carried out. A typical development 

process is one in which a new memory class has to be supported, 

with new features added to the memory controller. The new 

memory model therefore has to be incorporated into the testbench, 

existing checks have to be updated, new checks have to be added, 

and if the bus protocol has been extended (perhaps by adding 

sideband signals), the eVC must be extended. If the original 

authors are not present for consultation, undertaking this work is a 

significant challenge, particularly in the absence of an adequate 

means of viewing and reasoning about the existing system. In our 

opinion, the lack of visualisation software for graphically 

representing aspect-oriented systems is the single largest problem 

facing the adoption of aspect-orientation in the hardware 

verification community. 

4.3 Visualising Dynamic Behaviour 
Any modelling approach adopted by Infineon has to understand 

the dynamic nature of e, as structs can be generated and destroyed 

during a simulation. Struct generation occurs in two ways - start-

time generation and runtime generation. In start-time generation, e 

generates pseudo-random values to apply to all variables within 

the system, satisfying all constraints, and creating all units and 

structs that should exist at time 0. In runtime generation, in-line 

generate statements are used within methods to create new structs. 

 

Listing 8. Dynamic struct generation 

In Listing 8, method() runs, and every cycle it loops and re-

runs. Therefore, at every clock cycle a new dog is generated by 

the gen method that constrains the dog kind to be one of two 

types (although the dog may have other types available, as in 

Listing 2). This new dog is then added to the list_of_dogs, 

and if the new list size is greater than 4, the dog at the bottom of 

the list is removed, i.e., the struct is effectively deleted. We 

therefore need to be able to model a creation point within the code 

and assign constraints to the creation point to restrict the range of 

structs that need to be modelled as possibilities at the creation 

point. There also needs to be some way of indicating the 

destruction of structs, and when they are removed from the 

system. However, there is nothing stopping the user extending 

inbuilt methods such as pop0() using an is only extension to 

change the behaviour of the system, so that it no longer deletes 

structs but instead manipulates them or even generates new 

structs. Essentially, a modelling approach cannot rely on 

keywords for inbuilt methods to establish what is happening but 

needs some way of visualising both the dynamic creation and 

// file A: 
method() is { 
    print "I am A"; 
}; 
// file B: 
method() is also {   
    print "I am B";   
};   
// file C: 
method() is only { 
    print "I am C"; 
}; 

unit kennel { 
 !list_of dogs : list of dog_struct;     
// ! Means do not generate at start 
//time, leave it null. 
 method()@clk is{ 
   while TRUE { 
      wait cycle; 
      gen dog keeping {it.kind in  
        [pug,poodle]}; 
      list_of_dogs.add(dog); 
       if list_of_dogs.size()>4 { 
         list_of_dogs.pop0()};  
      // pop0() removes the bottom-most 
      // list element 
    }; 
  }; 
}; 

 



destruction of modules and the way in which this behaviour is 

affected by aspect extensions.  

4.4 Modelling Time 
The e language supports the concept of time (as discussed in 

Section 3.3 and illustrated in Listing 8). Therefore, any modelling 

approach used to represent e systems has to understand the 

concept of real-time and time consumption. In addition to 

emitting events, a time-consuming method can wait for an event, 

sync to an event, or wait a number of clock cycles. This can lead 

to the situation in Listing 8 where a perpetually-running method is 

set off. If method() was not synchronised to a clock, a 0-cycle 

delay loop is set off, causing the simulation to hang (the Specman 

simulator would execute method() forever without advancing 

time, and the system would lock). A modelling environment 

should be able to detect the difference between the two types of 

method, and highlight such a scenario as a potential problem. 

An additional problem with modeling time is that the temporal 

behaviour of a method can be completely changed via aspect 

extension. Time consuming methods are synchronised to clocking 

events, and these events can be extended via aspects as discussed 

in Section 2. For example, an aspect could be used to change the 

behaviour described in Listing 8 by altering both the amount of 

time consumed when performing the wait cycle and the 

frequency with which method() repeats. In addition, the 

method itself can be extended using is also, is only or is 

first and these extensions can specify temporal behavior.  

We also believe that a means to graphically represent time in e 

would be of significant benefit when handling temporal 

expressions (TEs). TEs are used to describe and check the 

behavior of the DUT over time, and are associated with sampling 

events. These events can themselves be extended, as illustrated in 

Listing 9. 

 

 
 

The expect statement is a runtime check that is triggered every 

time the clk event is true, i.e., on the rising edge of clk in the 

DUT. The expect statements looks for TE1 being true on one 

rising edge of clk, and TE2 being true on the next rising edge of 

clk. The is only extension modifies the clk event so that it 

is now true on every falling edge of clk, which implicitly 

changes when the expect statement is triggered. The temporal 

check in the expect statement does not have to be over one 

clock cycle, it could be over several cycles and involve several 

events or TEs, and each one can be extended using aspects.  

4.5 Integration With Other Languages 
Any approach for modelling hardware verification environments 

must be able to interface with concurrent High-level Design 

Languages (HDLs) such as Verilog and VHDL, as well as 

hardware-specific extensions of conventional languages such as 

SystemC that support hardware modelling. All hardware 

verification environments model some type of system behaviour, 

and sample the DUT to check for correct operation. The DUT 

should ideally be modelled as well, but generally it is not. In 

addition, the ideal verification development process includes 

development of an early C model of the DUT which is later 

replaced with the actual HDL model. Therefore, the modelling 

approach used to represent an aspect-oriented hardware 

verification environment needs to be able to reference external 

components that might be implemented in different languages and 

that might change over time.  

5. Summary 
In this paper we have discussed our experience with using an 

aspect-oriented modelling language to model hardware verific-

ation testbenches written in the e programming language. The 

dynamic, temporal nature of e meant that adequately modelling e 

testbenches was beyond the scope of Theme/UML, primarily due 

to its foundations in UML. Based on these findings we have 

proposed a number of requirements that should be addressed by 

aspect-oriented modelling approaches if they aspire to modelling 

hardware verification environments.  
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   event clk is rise(‘clk)@sim; 

   expect TE1 => TE2 @clk; 

   event clk is only fall(‘clk)@sim; 

 

Listing 9. Aspect-oriented temporal extension 


