I R]
I s Northeastern University

Computer Science Dissertations College of Computer and Information Science

January 01, 2012

New cloud architectures for the next generation
internet

Fangfei Zhou

Northeastern University

Recommended Citation

Zhou, Fangfei, "New cloud architectures for the next generation internet" (2012). Computer Science Dissertations. Paper 18.
http://hdl.handle.net/2047/d20002732

This work is available open access, hosted by Northeastern University.

http://iris.lib.neu.edu/comp_sci_diss
http://iris.lib.neu.edu/comp_info_sci
http://hdl.handle.net/2047/d20002732

New Cloud Architectures For The Next Generatipternet

Fangfei Zhou
Northeastern University
Boston, Massachusetts

Abstract

Cloud computing has ushered in a new paradigm with the avi#ijeddt computing
as a service, letting customers share the same physicasinicture and purchase
computing resources on demand (e.g. Amazon EC2 and WindowseAzThe
multi-tenancy property of cloud computing offers clienexibility while creating
a unique set of challenges in areas such as reliability anutisg

In this thesis we study one challenge (SecureCloud) and thppertunities
(DNSCloud, WebCloud and SamaritanCloud). In SecureCloud wéexmow
multi-tenancy, or the sharing of resources across userdead to the undermining
of privacy and security. Taking Amazon EC2 as an example watiigean im-
portant scheduling vulnerability in Virtual Machine Mooiis (VMMSs). We create
an attack scenario and demonstrate how it can be used tacgtdad in the cloud.
We also discuss how attacks can be coordinated across theé afoa collection
of VMs. We present a general framework of solutions to consah attacks.
DNSCloud, WebCloud and SamaritanCloud are proposals for nehitactures
that improve delivery of existing infrastructural senscand enable entirely new
functionalities. The Domain Name System (DNS) has long lveeognized as the
Achilles’ heel of the Internet and a variety of new (cachéspning and other) at-
tacks surfacing over the past few years have only servedntoree that notion.

We present DNSCloud, a new architecture for providing a mabast DNS service
that does not require a forklift upgrade (unlike DNSSEC).agdontent on Web

sites like online social networks is created at the edge tiork but distributed

using a traditional client-server model. WebCloud is a nol@ld architecture that

leverages the burgeoning phenomenon of social networksrfabling a more ef-
ficient and scalable system for peer-to-peer content dgligamaritanCloud is a

proposal for a new architecture that exploits the mobilitypersonal computing
devices to share relevant locality-specific information.allows people to offer
physical help to each other remotely, in a secure and prwaje Taken as a whole
this thesis represents a synthesis of theory and pracatevith hasten the ongoing

transition to the era of cloud computing.

Introduction

1.1 Motivation

Over the past decades, data and applications have beery slawvkteadily mi-
grating to the Internet (or its more fashionable synonyrm, “@loud”), with ser-
vices being delivered to end-users through a client-seneetel using standardized
over-the-web protocols. This outsourcing to the Interettimues to be a work-in-
progress with cloud-computing the phrase du jour.

Cloud computing [20] is built on top of server virtualizatitechnology [21],
which allows multiple instances of virtual machines rurgnon a single physical
server. A cloud computing model is comprised of a front endl aback end. The
front end is the interface for users to interact with the elyst for example, users
can open and edit files through browser, or remotely conmeeirtual machines
to enjoy applications and other computing resources. Tio& bad is the cloud
itself, it maintains data and applications and deliversitie end users as a service
through the Internet.

Some of the biggest cloud computing services include Wededa&mail (e.g.
Hotmail, Gmail), social networking (e.g. Facebook, TwitlenkedIn), document
hosting services, (e.g. Google Docs, Flickr, Picasa, YbeJand back up services
(e.g. Dropbox), etc. Major corporations including Amaz@ygogle, Microsoft
and Oracle have invested in cloud computing services aret oftlividuals and

businesses a range of cloud-based solutions, e.g. AmazonlE@ad Microsoft

CHAPTER 1. INTRODUCTION

Azure [6]. In these services, users rent virtual machinesdaning their own
applications and are charged by the amount of time theadirhachine is running
(in hours or months).

Cloud computing is a new and different way to architect andotefy manage
computing resources. Therefore, it is important to study lits shortcomings and
its advantages which could help resolve current Interrseteis. Here are some of

the significant advantages.

e Lower cost:Cloud computing requires lower cost for data processing when

compared with the older model of maintaining software oralouachines.
The use of the cloud removes the need for purchasing sofawvaréardware

and shifts the costs to a pay-per-use model.

¢ Mobility and flexibility: As the service is delivered through the Internet, users
can access the resources no matter where they are locastdntideploy-
ment and the pay-as-you-go business model offer users neaibilfity than
other computing services. Users do not need to worry abaqlicagion in-

stallation and updates.

e More capacity:Cloud computing offers virtually limitless storage and com-
puting power, thus enhancing the user’s capability beydwdcapacity of

their local machines.

e Device independencerinally, the ultimate cloud computing advantage is
that users are no longer tethered to a single computer oonetiExisting

applications and data follow users through the cloud.

On the other hand, cloud computing has created its own ciggdke One of the
biggest concerns about cloud computing is security. Clonapeting also requires
a constant-on and high-bandwidth Internet connectionclwvis a limitation for

some clients. As data and application are stored on prowdeed machines,
clients lose their control over the software and become g on the provider to

maintain, update and manage it. Cloud computing can alsg bigks in the areas

1.2. OVERVIEW 3

of privacy and confidentiality. Clients storing their sensitdata and information
on third-party servers may become compromised if the pesviths inadequate
security in terms of technology or processes.

Today'’s cloud computing services are typically categatizeo the following
three classes of service: Software as a Service (SaaShrRiats a Service (PaaS)

and Infrastructure as a Service (laaS), each with their @gnrity issues.

e SaaSCloud infrastructures providing software services oftepkya multi-
tenancy system architecture, where users access the sammnerent for
different applications. Optimization of speed, secuatgilability, recovery

are required in such services.

e PaaS:Cloud infrastructures allowing clients to develop cloudvgms and
applications should provide stable programming enviramrteols and con-

figuration management.

¢ laaS:Cloud infrastructures delivering virtualized resourceslemand should
meet growing or shrinking resource demand from clients, eltag guaran-

tee fair share among users.

A major shortcoming in the above approaches is the lack eiceife and ef-
ficient architectures that deliver the much-touted benefithe cloud while over-

coming its shortcomings.

1.2 Overview

This thesis proposes new architectures for cloud-comguhat not only fix ex-
isting infrastructural deficiencies but also pave the wayrfewer and improved
services. We present four new architectures.

SecureCloud [141]: Theft-free schedulers for multi-tenant architectures: Se
cure Cloud explores the security issues of cloud infrastinest In cloud computing

services, customers rent virtual machines (VMs) runnindgparware owned and

CHAPTER 1. INTRODUCTION

managed by third-party providers, and pay for the amouritrad their VM is run-
ning (in hours or months), rather than by the amount of CPU tised. Under
this business model, the choice of scheduling algorithnmettypervisor involves
a trade-off between factors such as fairness, usage capscaeduling latency.
As in operating systems, a hypervisor scheduler may be raliteeto behavior by
virtual machines which results in inaccurate or unfair sichieg. However, cloud
computing represents a new environment for such attackisvimreasons. First,
the economic model of many services renders them vulnetalileeft-of-service
attacks, which can be successful with far lower degrees faiinmess than required
for strong denial-of-service attacks. In addition, thekla¢ detailed application
knowledge in the hypervisor (e.g. to differentiate 1/0O wiaim voluntary sleep)
makes it more difficult to harden a hypervisor schedulerraganalicious behav-
ior. Therefore, verifying the scheduling fairness in claz@mnputing services is
very important to both the providers and the customers. Inp@hne, we study
the scheduling algorithm used by Amazon EC2. We discoverttigahypervisor
scheduler in Amazon EC2 is vulnerable to behavior by virtuathines which re-
sults in inaccurate or unfair scheduling. We describe aacktscenario, provide a
novel analysis of the necessary conditions for theft-ofise attacks, and propose
scheduler modifications to eliminate the vulnerability. iglaver, our attack itself
provides a mechanism for detecting the co-placement of Misch in conjunc-
tion with appropriate algorithms can be utilized to revéa tapping. We present
an algorithm that is provably optimal when the maximum piariisize is bounded.
In the unbounded case we show upper and lower bounds usirgrdbabilistic

method [18] in conjunction with a sieving technique.

DNSCloud [64]: DNS architecture protects itself from cache-poisoning at-
tacks. DNSCloud explores the domain of new cloud architesttinat allow for
improved and robust Internet services. The Domain Namee8yst DNS [85] is
a critical and integral part of the Internet. Kaminsky [52,700] showed that DNS
caches throughout the world were susceptible to cachemagoThis could lead

to large-scale impersonation attacks by fake websitesoNlgtcould it potentially

1.2. OVERVIEW

lead to the personal and financial ruin of individuals butgssful poisoning of this
system could also result in catastrophic consequences aianal level [13, 81]
were any infrastructural networks such as the military oekwdomains to be tar-
geted by an enemy. Currently, there are only two ways to néitias vulnerabil-
ity, patching the DNS server or patching the DNS protocelitPatching the DNS
protocol, i.e. substituting DNSSEC [85] instead of DNS regmia forklift upgrade
at both the client and resolving name-server ends and forthewvorld has settled
for updating and patching the DNS server software (typycBIND [85]). The

problem with the patch however, is that it requires upgradeall client side re-
solving name servers, which is the more vulnerable and nomsexnd of things. In
section 3, we propose DNSCloud, a new cloud-based archigedtudramatically

reduce the probability of suffering from a poisoned cachia@DNS.

WebCloud [142]: P2P content delivery system for (wide-area) social netaiork
Over the past few years, we have witnessed the beginningstoftan the patterns
of content creation and exchange over the web. Previoushteat was primar-
ily created by a small set of entities and was delivered tagelaudience of web
clients. Now, individual Internet clients are creating @t that makes up a sig-
nificant fraction of Internet traffic [17,47]. The net resigltthat, content today is
generated by a large number of clients located at the edde otwork, is of more
uniform popularity, and exhibits a workload that is govetiy the social network.
Unfortunately, existing architectures for content dimition are ill-suited for these
new patterns of content creation and exchange. In secti6ril,4ve propose We-
bCloud - a content delivery system designed for social nésvorhe key insight
is to leverage the spatial and temporal locality of inteledtveen social network

clients.

SamaritanCloud: Location-based cyber-physical network for obtaining +eal
world assistance. The tremendous rise in the popularitgaasnetworks has been
a defining aspect of the online experience over the last fewsyeSocial network
services provide a platform allowing for the building of daelations among

people that share similar interests and actives. More tgcte phenomenon of

CHAPTER 1. INTRODUCTION

geosocial networking has come to the fore. These servieethesGPS capabili-
ties of mobile devices to enable additional social dynamiingeosocial network
services such as Foursquare, Gowalla, Facebook Place¥eqnd3-5, 9], clients
share their current locations as well as recommendatiansvients, food or other
interests. In section 5 we propose not just a new architechut, in fact, a new
service — SamaritanCloud — the goal of which is to provide afeageople to con-
nect with others (possibly strangers) in a remote locatr@habtain (physical) help
from them. It is possible that such a service may never taldesubive believe there
are several instances in which such a service can be of usspe e.g., please
tell the marathon runner with bib #123 | will wait at the finiste; did | leave my
textbook in the restroom? is there a brown puppy roamingerptayground? Such
a service will require efficient technical solutions to deshs such as scalabil-
ity, privacy, reputation etc., to overcome the social lesriof soliciting help from
strangers. We focus primarily on the technical aspects albbdity — efficiently
finding candidates for a request by comparing client profilels request criteria;
efficiency — improving server throughput on high dimenslgrafiles with local-
ity sensitive hashing; and privacy — matching people withrgjers in a secure and
private way so that the need for help and the ability, desigssist are disclosed in

a safe and controlled manner.

CHAPTER 2

SecureCloud

2.1 Introduction

Server virtualization [21] enables multiple instances ofaperating system and
applications yirtual machinesor VMSs) to run on the same physical hardware, as
if each were on its own machine. Recently server virtualiratias been used to
provide so-callectloud computingservices, in which customers rent virtual ma-
chines running on hardware owned and managed by third-paotyiders. Two
such cloud computing services are Amazon'’s Elastic ComputedJEC?2) service
and Microsoft Windows Azure Platform; in addition, similservices are offered
by a number of web hosting providers (e.g. Rackspace’s Rackspbud and
ServePath Dedicated Hosting’s GoGrid) and referred to esaliPrivate Servers
(VPS). In each of these services customers are charged layrtbent of time their
virtual machine is running (in hours or months), rather tbgthe amount of CPU
time used.

The operation of a hypervisor is in many ways similar to thlatuo operat-
ing system; as an operating system manages access by m®odessnderlying
resources, so too a hypervisor must manage access by muwlirplal machines
to a single physical machine. In either case the choice aédiding algorithm
will involve a trade-off between factors such as fairnesage caps and scheduling

latency.

CHAPTER 2. SECURECLOUD

As in operating systems, a hypervisor scheduler may be ralbfeto behavior
by virtual machines which results in inaccurate or unfairestuling. Such anoma-
lies and their potential for malicious use have been rea@aghin the past in oper-
ating systems—McCanne and Torek [88] demonstrate a defisdruice attack on
4.4BSD, and more recently Tsafrir [130] presents a simikacitagainst Linux 2.6
which was fixed only recently. Such attacks typically relytba use of periodic
sampling or a low-precision clock to measure CPU usage; likaia passenger
hiding whenever the conductor checks tickets, an attacgmogess ensures it is

never scheduled when a scheduling tick occurs.

Cloud computing represents a new environment for such attdckvever, for
two reasons. First, the economic model of many servicesersritiem vulnerable
to theft-of-service attacks, which can be successful vatidwer degrees of un-
fairness than required for strong denial-of-service &gadn addition, the lack of
detailed application knowledge in the hypervisor (e.g.iti@centiate 1/0 wait from
voluntary sleep) makes it more difficult to harden a hypemwischeduler against

malicious behavior.

The scheduler used by the Xen hypervisor (and with modiboatby Amazon
EC2) is vulnerable to such timing-based manipulation—nmathan receiving its
fair share of CPU resources, a VM running on unmodified Xengusur attack
can obtain up to 98% of total CPU cycles, regardless of the eumbother VMs
running on the same core. In addition we demonstrate a kerodlule allowing
unmodified applications to readily obtain 80% of the CPU. Tlea Xcheduler also
supports a non-work-conserving (NWC) mode where each VM’s CBabea is
“capped”; in this mode our attack is able to evade its limitd ase up to 85% of
total CPU cycles. The modified EC2 scheduler uses this to difteate levels of
service; it protects other VMs from our attack, but we stithée utilization limits
(typically 40%) and consume up to 85% of CPU cycles.

We give a novel analysis of the conditions which must be preg® such
attacks to succeed, and present four scheduling modifiatidnich will prevent

this attack without sacrificing efficiency, fairness, or W€sponsiveness. We have

2.2. BACKGROUND 9

implemented these algorithms, and present experimerstaltseon Xen 3.2.1.

Chapter outline: The rest of chapter is organized as follows. Section 2.2 pro-
vides a brief introduction to VMM architectures, Xen VMM aAdhazon EC2 as
background. Section 2.3 discusses related work. Sectibdekcribes the details
of the Xen Credit scheduler. Section 2.5 explains our attec&kcheme and Section
2.7 presents experimental results in the lab as well as onzAdm&C2. Section
2.8 details our scheduling modifications to prevent thiackitand evaluates their
performance and overhead. Section 2.9 proofs how our atgacheme could

coordinate attacks, and we conclude in Section 2.10.

2.2 Background

We first provide a brief overview of hardware virtualizatimechnology, and of the

Xen hypervisor and Amazon'’s Elastic Compute Cloud (EC2) semvigarticular.

2.2.1 Hardware virtualization

Hardware virtualization refers to any system which intsgmitself between an
operating system and the hardware on which it executesidingvan emulated or
virtualizedview of physical resources. Almost all virtualization ssis allow mul-
tiple operating system instances to execute simultangoessth in its owrvirtual
machine(VM). In these systems a Virtual Machine Monitor (VMM), alknown
as ahypervisor is responsible for resource allocation and mediation ofilvare
access by the various VMs.

Modern hypervisors may be classified by the methods of exerguest OS
code without hardware access: (a) binary emulation andlatan, (b) para-
virtualization, and (c) hardware virtualization supporBinary emulation exe-
cutes privileged guest code in software, typically withtjustime translation for
speed [15]. Hardware virtualization support [2] in receB6XCPUs supports a

privilege level beyond supervisor mode, used by the hypervio control guest

10

CHAPTER 2. SECURECLOUD

OS execution. Finally, para-virtualization allows the gu@S to execute directly
in user mode, but provides a sethofpercalls like system calls in a conventional

operating system, which the guest uses to perform privilégections.

2.2.2 The Xen hypervisor

Xen is an open source VMM for x86/x64 [33]. It introduced pandualization
on the x86, using it to support virtualization of modified guieperating systems
without hardware support (unavailable at the time) or therlogad of binary trans-
lation. Above the hypervisor there are one or more virtuatimmaes ordomains

which use hypervisor services to manipulate the virtual CRtU@erform 1/0O.

2.2.3 Amazon Elastic Compute Cloud (EC2)

Amazon EC2 is a commercial service which allows customeraitotineir own
virtual machine instances on Amazon'’s servers, for a sgelgirice per hour each
VM is running. Details of the different instance types cuthg offered, as well as

pricing per instance-hour, are shown in Table 2.1.

Table 2.1: Amazon EC2 Instance Types and Pricing. (Sprin@ 28fpeed is given
in “Amazon EC2 Compute Units”.)

Instance Type Memory Coresspeed $/Hr
Small 1.7GB 1x 1 0.085
Large 7.5 2x 2 0.34
X-Large 15 4x 2 0.68
Hi-CPU Med. 1.7 2x 2.5 0.17
Hi-CPU X-Large 7 8x 2.5 0.68

Amazon states that EC2 is powered by “a highly customizedoisf Xen,
taking advantage of virtualization” [11]. The operatingsms supported are
Linux, OpenSolaris, and Windows Server 2003; Linux inséan@nd likely Open-
Solaris) use Xen'’s para-virtualized mode, and it is suggethat Windows in-

stances do so as well [25].

2.3. RELATED WORK 11
2.3 Related work

To the best of our knowledge, our work is the first to show howehbérately
misbehaving VM can unfairly monopolize CPU resources in tuglized environ-
ment, with important implications for Cloud Computing enviroent. However,
the concept of a timing attack long predates computers. rifstfal. [130] de-
signed a cheat attack based on a similar scenario in contgxboesses on the
Linux 2.6 scheduler, allowing an attacking process to apfreaonsume no CPU
and receive higher priority. McCanne and Torek [88] predemtsame cheat attack
on 4.4BSD, and develop a uniform randomized sampling clodkstonate CPU
utilization. They describe sufficient conditions for thigtiemate to be accurate, but
unlike section 2.8.2 they do not examine conditions for dttbeservice attack.
Cherkasova and Gup#t al. [31, 32] have done an extensive performance analysis
of scheduling in the Xen VMM. They studied 1/0O performancetfee three sched-
ulers: BVT, SEDF and Credit scheduler. Their work showed tlwah bhe CPU
scheduling algorithm and the scheduler parameters daflgtimpact the 1/0 per-
formance. Furthermore, they stressed that the 1/0O modelenrEmains an issue
in resource allocation and accounting among VMs. Since Daias indirectly
involved in servicing I/O for guest domains, I/O intensivahins may receive ex-
cess CPU resources by focusing on the processing resousstby®omain-0 on
behalf of I/0 bound domains. To tackle this problem, Gugidtal. [40] introduced
the SEDF-DC scheduler, derived from Xen's SEDF schedutet, tharges guest
domains for the time spent in Domain-0 on their behalf. Gdaimet al.[57] pro-
posed a CPU scheduling algorithm as an extension to Xen’'s Sfeb&duler that
preferentially schedules 1/O intensive domains. The kegioehind their algorithm
is to count the number of packets flowing into or out of each @omand to sched-
ule the one with highest count that has not yet consumed titeesice. However,
Ongaroet al. [101] pointed out that this scheme is problematic when baafitia
intensive and latency-sensitive domains run concurrestifhe same host - the

bandwidth-intensive domains are likely to take priorityeoany latency-sensitive

12

CHAPTER 2. SECURECLOUD

domains with little 1/O traffic. They explored the impact o scheduler on I/O
performance using multiple guest domains concurrentlyingdifferent types of
applications and evaluated 11 different scheduler cordiguns within Xen VMM
with both the SEDF and Credit schedulers. They also proposttiphe methods to
improve 1/0O performance. Wengf al. [134] found from their analysis that Xen’s
asynchronous CPU scheduling strategy wastes considerhapsecpl CPU time.
To fix this problem, they presented a hybrid scheduling fraork that groups
VMs into high-throughput type and concurrent type and aetees processing re-
source allocation among VMs based on type. In a similar vaim Kt al. [77]
presented a task-aware VM scheduling mechanism to imph®/pdrformance of
I/0-bound tasks within domains. Their approach employy-pax techniques to
peer into VMs and identify 1/O-bound tasks in mixed worklead here are some
configurations and policies [70,95, 111] proposed to imprgen security in other
perspectives but not scheduling attacks. Very recentlyteRpartet al. [109] in-
stantiate new VMs on EC2 until one is placed co-resident vigtarget; they then
show that known cross-VM side-channel attacks can extréotrnation from the
target. However the side-channel attacks were carried mgtcefully controlled
machines in the lab, not on EC2, and are likely to be signiflganbre difficult
in practice [125], while, our exploit is directly applicabto EC2. We show that
our exploit can be used to infer the mapping of VMs to physieadts (Partition)
and this information can then be used to amplify our schadudittack into a co-
ordinated siege by a collection of VMs. Although there isigant literature on
similar problems for contention resolution in multiplecass channels [59, 60, 79],

to the best of our knowledge Partition has not been studiditea

2.4. XEN CREDIT SCHEDULER ANALYSIS

13

2.4 Xen Credit Scheduler analysis

In Xen (and other hypervisors) a single virtual machine iaf one or more
virtual CPUs (VCPUSs); the goal of the scheduler is to determihizch VCPU to
execute on each physical CPU (PCPU) at any instant. To do thisist deter-
mine which VCPUs are idle and which are active, and then frarathive VCPUs
choose one for each PCPU.

In a virtual machine, a VCPU is idle when there are no activeg@sses running
on it and the scheduler on that VCPU is runningdle task On early systems the
idle task would loop forever; on more modern ones it execatd&\LT instruction,
stopping the CPU in a lower-power state until an interrupeceived. On a fully-
virtualized system this HALT traps to the hypervisor andicates the VCPU is
now idle; in a para-virtualized system a direct hypervisris used instead. When
an exception (e.g. timer or I/O interrupt) arrives, that VCBttomes active until
HALT is invoked again.

By default Xen uses the Credit scheduler [31], an implemeoriaif the classic
token buckealgorithm in which credits arrive at a constant rate, areseoved up
to a maximum, and are expended during service. Each VCPWaesceredits at
an administratively determined rate, and a periodic scleedick debits credits
from the currently running VCPU. If it has no more credits, tiext VCPU with
available credits is scheduled. Every 3 ticks the schedyéiches to the next
runnable VCPU in round-robin fashion, and distributes needits, capping the
credit balance of each VCPU at 300 credits. Detailed parasiéassuming even

weights) are:

Fast tick period: 10ms
Slower (rescheduling) tick: 30ms
Credits debited per fast tick: 100
Credit arrivals per fast tick: 100/N
Maximum credits: 300

14

CHAPTER 2. SECURECLOUD

where N is the number of VCPUs per PCPU. The fast tick decrentie&tsinning
VCPU by 100 credits every 10 ms, giving each credit a value @f.B0of CPU
time; the cap of 300 credits corresponds to 30 ms, or a fukdaling quantum.
Based on their credit balance, VCPUs are divided into thraesstd NDER with
a positive credit balancVER or out of credits, an@LOCKEDor halted.

The VCPUs on a PCPU are kept in an ordered list, with those in URIBiate
ahead of those in OVER state; the VCPU at the head of the queagdeisted for
execution. In work conserving mode, when no VCPUs are in th®©BR state,
one in the OVER state will be chosen, allowing it to receivaenan its share of
CPU. In non-work-conserving (NWC) mode, the PCPU will go idl¢easl.

Figure 2.1: Per-PCPU Run Queue Structure

head of the
run queue

if no Boost ones

no

The executing VCPU leaves the run queue head in one of two vigygoing
idle, or when removed by the scheduler while it is still aetiw CPUs which go
idle enter the BLOCKED state and are removed from the queuéve®¢CPUs are
enqueued after all other VCPUs of the same state—OVER or UND&&Rskown
in Figure 2.1.

The basic credit scheduler accurately distributes ressutietween CPU-
intensive workloads, ensuring that a VCPU receivingredits per 30 ms epoch
will receive at least /10 ms of CPU time within a period of 30N ms. This fair-
ness comes at the expense of I1/0O performance, however, afs exeh as packet

reception may wait as long as 30N ms for their VCPU to be scleedul

2.5. ANATOMY OF AN ATTACK 15

To achieve better I/O latency, the Xen Credit scheduler giterto prioritize
such 1/0. When a VCPU sleeps waiting for 1/0 it will typically Jeremaining
credits; when it wakes with remaining credits it enters the(EBJ state and may
immediately preempt running or waiting VCPUs with lower pities. If it goes
idle again with remaining credits, it will wake again in BOOSgiiority at the next
I/O event.

This allows I/O-intensive workloads to achieve very lowelaty, consuming
little CPU and rarely running out of credits, while preseg/fair CPU distribution
among CPU-bound workloads, which typically utilize all theriedits before being
preempted. However, as we describe in the following secti@iso allows a VM

to “steal” more than its fair share of CPU time.

2.5 Anatomy of an attack

Although the Credit scheduler provides fairness and low H@ricy for well-
behaved virtual machines, poorly-behaved ones can evad@mess guarantees.
In this section we describe the features of the schedulestwiginder it vulnerable
to attack, formulate an attack scheme, and present resuoigrsg successful theft
of service both in the lab and in the field on EC2 instances. Qaclarelies on pe-
riodic sampling as used by the Xen scheduler, and is showrtiaeebne in Figure
2.2. Every 10 ms the scheduler tick fires and schedules taekaiy VM, which
runs for10 — e ms and then callsialt() to briefly go idle, ensuring that another
VM will be running at the next scheduler tick. Our attack if-sgnchronizing due
to wake-up after a scheduling tick. In theory the efficientyhis attack increases
ase approaches 0; however in practice some amount of timirgy jistfound, and
overly small values of increase the risk of the VM being found executing when
the scheduling tick arrives.

When perfectly executed on the non-BOOST credit scheduisrettsures that
the attacking VM will never have its credit balance debitéfidthere areN VMs

with equal shares, then the N-1 victim VMs will receive ctedit a total rate of

16

CHAPTER 2. SECURECLOUD

Figure 2.2: Attack Timing

scheduler

tick attacker attacker scheduler
wakes up scheduled attacker Sleeps tick
_fime _
rev other
Fz/M f% attacker runs § vm
2!]
' 10'ms other VM
previous VM reschedule reschedule !

is charged is charged

AL, and will be debited at a total rate of

This vulnerability is due not only to the predictability dfe sampling, but to
the granularity of the measurement. If the time at which @dghbegan and fin-
ished service were recorded with a clock with the same 10 stduton, the attack
would still succeed, as the attacker would have a calcukstedution time of) on

transition to the next VM.

This attack is more effective against the actual Xen sclezdutcause of its
BOOST priority mechanism. When the attacking VM yields the CiRPgoes idle
and waits for the next timer interrupt. Due to a lack of infation at the VM
boundary, however, the hypervisor is unable to distingbistiveen a VM waking
after a deliberate sleep period—a non-latency-sensitigate—and one waking for
e.g. packet reception. The attacker thus wakes in BOOSTityreond is able to
preempt the currently running VM, so that it can executelfbor e ms out of every

10 ms scheduler cycle.

2.6. IMPLEMENTATION 17

2.6 Implementation

2.6.1 User-level

To examine the performance of our attack scenario in pmctie implement it
using both user-level and kernel-based code and evaluate ith the lab and on
Amazon EC2. In each case we test with two applications: a sitmop we refer
to as “Cycle Counter” described below, and the Dhrystone ZB][CPU bench-
mark. Our attack described in Section 2.5 requires milbseelevel timing in order
to sleep before the debit tick and then wake again at the tigderforms best ei-
ther with a tick-less Linux kernel [117] or with the kerneiner frequency set to

1000 Hz.

prev=rdtsc()
| oop:
if (rdtsc() - prev) > 9ns
prev = rdtsc()

usl eep(0. 5ms)

2.6.2 Kernel-level

To implement kernel-level attack, the most basic way to dbasto add files to the
kernel source tree and modify kernel configuration to ineltiee new files in com-
pilation. However, most Unix kernels are monolithic. Therled itself is a piece
of compact code, in which all functions share a common spadeaee tightly re-
lated. When the kernel needs to be updated, all the functiarst be relinked
and reinstalled and the system rebooted before the chamgtka affect. This
makes modifying kernel level code difficult, especially whte change is made
to a kernel which is not in user’s control. Loadable kernebie (LKM) allows
developers to make change to kernel when it is running. LKEhi®bject file that
contains code to extend the running kernel of an operatiatesy. LKMs are typ-

ically used for one of the three functionalities : devicevdrs, filesystem drivers

18

CHAPTER 2. SECURECLOUD

and system calls. Some of the advantages of using loadaftrelkaodules rather
than modifying the base kernel are: (1) No kernel recomipitais required. (2)
New kernel functionality can be added without root privéeg(3) New functional-
ity takes effect right after module installation, no rebmotequired. (4) LKM can
be reloaded at run time, it does not add to the size of kermatgeently.

The attack is implemented as a kernel thread which invoke®@&rsleep for
10 -e ms, allowing user applications to run, and then invokesSGEED bl ock
hypercall via the safe halt function. In practicenust be higher than for the user-

mode attack, due to timing granularity and jitter in the kdrn

| oop:
nsl eep(8);
safe_halt();

In theory the less is in kernel module implementation, the more CPU cycles
the user application could consume. However due to our atialu of msleep
there is a 1ms timing jitter in kernemsleep(8)allows the kernel thread to wake
up on time and temporarily pause all user applications. TheiM is considered
as idle and gets swapped out before debit tick happens. 8ialeep(9)does not
guarantee the thread wake up before the debit tick every, tinus the attacking
VM may not be swapped in/swapped out as expected. Accorditiys observa-

tion, e = 2 is a safe choice in implementation for kernel 2.6.

2.7 Evaluation
2.7.1 User-level

Experiments in the lab

Our first experiments evaluate our attack against unmodffetin the lab in work-

conserving mode, verifying the ability of the attack to bddny CPU resources to

2.7. EVALUATION 19

competing “victim” VMs, and to effectively use the “stole€PU time for com-
putation. All experiments were performed on Xen 3.2.1, orcai2 2.7 GHz Intel
Core2 CPU. Virtual machines were 32-bit, para-virtualizetjle-VCPU instances
with 192 MB memory, each running Suse 11.0 Core kernel 2.6i#5av1000 Hz
kernel timer frequency. To test our ability to steal CPU reses from other VMs,
we implement a “Cycle Counter”, which performs no useful wdmkt, rather spins
using the RDTSC instruction to read the timestamp registéiti@ck the time dur-
ing which the VM is scheduled. The attack is performed by @avérof this code,
“Cycle Stealer”, which tracks execution time and sleeps ahbas been sched-
uled for10 — ¢ (heres = 1 ms). Note that the sleep time is slightly less thaas
the process will be woken at the next OS tick after timer etpn and we wish
to avoid over-sleeping. In Figure 2.3a we see attacker artdrvperformance on
our 2-core test system. As the number of victims increasts;keer performance
remains almost constant at roughly 90% of a single core,enthi victims share

the remaining core.

To measure the ability of our attack to effectively use st@®U cycles, we em-
bed the attack within the Dhrystone benchmark. By compategime required
for the attacker and an unmodified VM to complete the same rurobDhrys-
tone iterations, we can determine thet amount of work stolen by the attacker.
Our baseline measurement was made with one VM running urfredddhrys-
tone, with no competing usage of the system; it complétéd< 10 iterations in
208.8 seconds. When runniigunmodified instances, three for each core, each
completed the same5 x 10? iterations in640.8 seconds on average32:6% the
baseline speed, or close to the expected fair share penfioaad33.3%. With one
modified attacker instance competing agamsinmodified victims, the attacker
completed i245.3 seconds, running at a speed8t3% of baseline, rather than
33.3%, with a corresponding decrease in victim performance. fasillts for ex-
periments with 0 to 5 unmodified victims and the modified Dkoge attacker are
shown in Figure 2.3b. In the modified Dhrystone attacker t8€ Tegister is sam-

pled once for each iteration of a particular loop, as deedrib the appendix; if this

20 CHAPTER 2. SECURECLOUD

Figure 2.3: Lab experiments (User Level) - CPU and applicgpierformance for
attacker and victims.

(a) CPU (cycle stealer)

o 100 T T T T
B 90 ¢]
(&)
o 80 [-
2 70F .
o 60 .
S 50 i
;\5‘ 40 - Attacker —<—]
g B Victims N
E 30 FairShare
O 20 | | | |

0 1 2 3 4 5

Number of victims on the same hardware

(b) Application (Dhrystone)

8 I I I I I I
7 L Attacker K>3 |
o Victims
i
¥6 7
85 H i
(%2]

—4 -
83| i
c

22 +F .
(72

=1 + .
<

0o

0 1 2 3 4 5

Number of victims on the same hardware

sampling occurs too slowly the resulting timing inaccuragght affect results. To
determine whether this might occur, lengths of the compuiteséeep phases of the
attack were measured. Almost a@B(8%) of the compute intervals were found to
lie within the bound® + 0.037 ms, indicating that the Dhrystone attack was able to
attain timing precision comparable to that of Cycle Steasrdescribed in Section
2.5, the attacker runs for a period of lendth— = ms and then briefly goes to sleep
to avoid the sampling tick. A smaller value oincreases the CPU time stolen by

the attacker; however, too small amncreases the chance of being charged due to

2.7. EVALUATION 21

timing jitter. To examine this trade-off we tested valued 0f- ¢ between7? and
9.9ms. Figure 2.7 shows that under lab conditions the peak waas®8% with

an execution time 09.8 ms and a requested sleep time&)af ms. When execution
time exceeded.8 ms the attacker was seen by sampling interrupts with high-pro
ability. In this case it received only abo2t% of one core, or even less than the

fair share 0f33.3%.

Experiments on Amazon

We evaluate our attacking using Amazon EC2 Small instancéstive following
attributes:32-bit, 1.7 GB memory,1 VCPU, running Amazon’s Fedora Cogeker-

nel 2.6.18, with a 1000 Hz kernel timer. We note that the VCPU providedhi® t
Small instance is described as havingEC2 Compute Unit”, while the VCPUs
for larger and more expensive instances are described asghavor 2.5 com-
pute units; this indicates that the scheduler is being usewn-work-conserving
mode to throttle Small instances. To verify this hypothesis ran Cycle Stealer

in measurement (i.e. non-attacking) mode on multiple Smathnces, verifying
that these instances are capped to less %haha single CPU core—in particular,
approximately38% on the measured systems. We believe that the nominal CPU
cap for 1-unit instances on the measured hardware is 40%esmunding to an un-
throttled capacity of 2.5 units. Additional experimentsrgvperformed on a set of

8 Small instances co-located on a single 4-cb6e5Hz physical system provided
by our partners at AmazonThe Cycle Stealer and Dhrystone attacks measured in
the lab were performed in this configuration, and resultsshoevn in Figure 2.4a
and Figure 2.4b, respectively. We find that our attack is thévade the CPU cap

of 40% imposed by EC2 on Small instances, obtaining up to 85@nefcore in

the absence of competing VMs. When co-located CPU-hungryifivie/Ms were
present, however, EC2 performance diverged from that of wified Xen. As seen

in Figures 2.4a and 2.4Db, co-located VM performance wasaligt unaffected by

! This configuration allowed direct measurement of attackaichjpn co-located “victim” VMs,
as well as eliminating the possibility of degrading perfarmoe of other EC2 customers.

22

CHAPTER 2. SECURECLOUD

our attack. Although this attack was able to steal cyclesfeC2, it was unable to

steal cycles from other EC2 customers.

Figure 2.4: Amazon EC2 experiments - CPU and application pedace for at-
tacker and victims.

(a) CPU (cycle stealer)

| |
Attacker —=<— _|
Victims

1 2 3 4 5 6 7
Number of victims on the same hardware

(b) Application (Dhrystone)

N W b~ 01 O N

=y

Dhrystones / sec (*106)

| | | | | | | |
Attacker K=<

Victims

o

2.7.2 Kernel-

Lab experiments

o 1 2 3 4 5 6 7
Number of victims on the same hardware

level

were performed with one attacking VM, whadds the kernel

module, and up to 5 victims running a simple CPU-bound loopthis case the

fair CPU share for each guest instance on our 2-core testnsystaild bez—go%

of a single core, wheré/ is the total number of VMs. Due to the granularity of

2.7. EVALUATION 23

kernel timekeeping, requiring a largerthe efficiency of the kernel-mode attack is
slightly lower than that of the user-mode attack. We evalube kernel level at-
tacking with Cycle Stealer in measurement (non-attackingdlerand unmodified
Dhrystone. In our tests, the attacker consumed up to 80.0&sofgle core, with
the remaining CPU time shared among the victim instances|tsegre shown in
Figure 2.5a. The average amount of CPU stolen by the attaekeealses slightly
(from 80.0% to 78.2%) as the number of victims increases; peegate that this
may be due to increased timing jitter causing the attackect¢asionally be charged
by the sampling tick. The current implementation of the kémodule does not
succeed in stealing cycles on Amazon EC2. We dig into Amazonke@l| syn-
chronization and our analysis of timing traces indicatexc bf synchronization of
the attacker to the hypervisor tick, as seen for NWC mode itetthebelow; in this
case, however, synchronization was never achieved. Thidave&t attack displays
strong self-synchronizing behavior, aligning almost indilagely to the hypervisor
tick; we are investigating approaches to similarly straegtself-synchronizing in
the kernel module.

Table 2.2: Lab: Attack performance in non-work-conservingde with 33.3%
limit.

Cycle Stealer Dhrystones % of
(% of 1 core achieved) persecond baseline
attacker 81.0 5749039 80.0
victims 23.4 1658553 23.1

2.7.3 Non-work conserving mode

As with most hypervisors, Xen CPU scheduling can be configimédlo modes:
work-conserving mode and non-work-conserving mode [42]. olider to opti-
mize scheduling and allow near native performance, worlseoving scheduling
schemes are efficient and do not waste any processing cy8kesong as there
are instructions to be executed and there is enough CPU tgpaaik-conserving

schemes assign instructions to physical CPU to be carried@ilerwise the in-

24 CHAPTER 2. SECURECLOUD

Figure 2.5: Lab experiments (Kernel Level) - CPU and appbegberformance for
attacker and victims.

(a) CPU (Cycle Counter)

100 : T | |
90 - n
80
70 - n
60 .

40 | Attacker —x<— .
30 k- _Victims

FairShare
20 .

0 1 2 3 4 5
Number of victims on the same hardware

CPU (%) of a single core
a
o
[
|

(b) Application (Dhrystone)

8 I I I I I I
7 L Attacker K>3 |
o Victims
i
6 [7
g5 H i
(%2]

—4 -
83| i
c

22 n .
(72

=1 + .
<

0o

0 1 2 3 4 5

Number of victims on the same hardware

structions will be queued and will be executed based on t&rity. In con-
trast, non-work-conserving schemes allow CPU resources tangsed. In such
schemes, there is no advantage to execute an instructioeisdgsually, the CPU
resources are allocated to VMs in proportion to their weigbtg. two VMs with
equal weight will own 50% each of CPU. When one VM goes idle gagdtof ob-
taining the free cycles, the other VM is capped to its 50%islgaiOur attack pro-
gram helps a VM to evade its capacity cap and obtain more, tii@nitother VMs

are busy or idle. Additional experiments were performedamnane our attack per-

2.8. THEFT-RESISTANT SCHEDULERS 25

formance against the Xen scheduler in non-work-conseminde. One attacker
and 5 victims were run on our 2-core test system, with a CPU £88% set for
each VM,; results are presented in Table 2.2 for both Cyclel&tead Dhrystone
attackers, including user-level and kernel-level implatagon. With a per-VM
CPU cap of 33%, the attacker was able to obtain 80% of a singke es well.
In each case the primary limitation on attack efficiency esdghanularity of kernel
timekeeping; we speculate that by more directly manipuoggtine hypervisor timer
it would be possible to increase efficiency. In non-worksmming case, when a
virtual machine running attacking program yields CPU, thsra chance (based
on our experiment results, not often though) that rescleedoés not happen, the
attacking VM is still considered as the scheduled VM whenitdedk happens and
gets debited. In other words, non-work-conserving modes ¢ stop our attack,
but adds some interferences. In addition we note that inaffgpeared to take sec-
onds or longer for the attacker to synchronize with the hyiger tick and evade

resource caps, while the user-level attack succeeds inateddi

2.8 Theft-resistant Schedulers

The class of theft-of-service attacks on schedulers whieldescribe is based on
a process or virtual machine voluntarily sleeping when ulddave otherwise re-
mained scheduled. As seen in Figure 2.6, this involves &ti&d-the attack will
only succeed if the expected benefit of sleepingfigr., is greater than the guar-
anteed cost of yielding the CPU for that time period. If theesttller is attempting
to provide each user with its fair share based on measuregg ugeen sleeping for
a durationt must reduce measured usage by more thianorder to be effective.
Conversely, a scheduler which ensures that yielding the CRUnewer reduce
measured usage more than the sleep period itself will bstagsito such attacks.
This is a broader condition than that of maintaining an usdxiestimate of
CPU usage, which is examined by McCanne and Torek [88]. Sonfierdsestant

schedulers, for instance, may over-estimate the CPU usaggackers and give

CHAPTER 2. SECURECLOUD

Figure 2.6: Attacking trade-offs. The benefit of avoidinghgding with probability
P must outweigh the cost of forgoirii,.., CPU cycles.

e) -
Ty T, T,
e | SN [P >

L
un slgep
Sampling tick % &

(probability P) i

them less than their fair share. In addition, for scheduMrEh do not meet our
criteria, if we can bound the ratio of sleep time to measurdragor, then we can

establish bounds on the effectiveness of a timing-basdtddhservice attack.

2.8.1 Exact scheduler

The most direct solution is thiéxact schedulerusing a high-precision clock (in
particular, the TSC) to measure actual CPU usage when a senéidlloccurs or
when a VCPU yields the CPU and goes idle, thus ensuring thatackatg VM

is always charged for exactly the CPU time it has consumed.attiqolar, this

involves adding logic to the Xen scheduler to record a higeeigion timestamp
when a VM begins executing, and then calculate the duratiGexecution when
it yields the CPU. This is similar to the approach taken in ¢hg recent tickless
Linux kernel [117], where timing is handled by a variablesival timer set to fire

when the next event is due rather than using a fixed-perioet tiick ?

2.8.2 Randomized schedulers

An alternative to precise measurement is to sample as bhdfateon a random

schedule. If this schedule is uncorrelated with the timihgroattacker, then over

2Although Kim et al. [77] use TSC-based timing measurememtheir modifications to the
Xen scheduler, they do not address theft-of-service valnibties.

2.8. THEFT-RESISTANT SCHEDULERS 27

sufficiently long time periods we will be able to estimate #itacker's CPU us-
age accurately, and thus prevent attack. Assuming a fixedjeleer sample, and
an attack pattern with peridfl.,.;., the probability” of the sampling timer falling
during the sleep period must be no greater than the fractiﬂrmco:ycle% which

it represents.

Poisson Scheduler:This leads to a Poisson arrival process for sampling, where
the expected number of samples during an interval is ex@ctportional to its
duration, regardless of prior history. This leads to an eeptial arrival time dis-
tribution,

—InU
AT =
A

whereU is uniform on (0,1) and\ is the rate parameter of the distribution. We

approximate such Poisson arrivals by choosing the intérahtime according to a
truncated exponential distribution, with a maximum of 30and a mean of 10 ms,
allowing us to retain the existing credit scheduler streetDue to the possibility
of multiple sampling points within a 10 ms period we use a sgpanterrupt for
sampling, rather than re-using or modifying the existingn @ ms interrupt.
Bernoulli Scheduler: The discrete-time analog of the Poisson process, the
Bernoulli process, may be used as an approximation of Poisson samplieig
we divide time into discrete intervals, sampling at any rivae with probability p
and skipping it with probabilityy = 1-p. We have implemented a Bernoulli sched-
uler with a time interval of 1 ms, sampling with= 1—10 or one sample per 10 ms,
for consistency with the unmodified Xen Credit scheduler. Bathan generate a
timer interrupt with its associated overhead every 1 ms, segthie same implemen-
tation strategy as for the Poisson scheduler, generatimgg@mnarrival time variate
and then setting an interrupt to fire after that interval esqi By quantizing time
at a 1 ms granularity, our Bernoulli scheduler leaves a smaiierability, as an
attacker may avoid being charged during any 1 ms intervaldsping before the
end of the interval. Assuming that (as in Xen) it will not reseiuntil the beginning
of the next 10 ms period, this limits an attacker to gainingmare than 1 ms every

10 ms above its fair share, a relatively insignificant thégervice.

28

CHAPTER 2. SECURECLOUD

Uniform Scheduler: The final randomized scheduler we propose isUimégorm
scheduler, which distributes its sampling uniformly asr&® ms scheduling inter-
vals. Rather than generating additional interrupts, or figodj the time at which
the existing scheduler interrupt fires, we perform sampluitpin the virtual ma-
chine switch code as we did for the exact scheduler. In pdaticat the beginning
of each 10 ms interval (tim&) we generate a random offsét uniformly dis-
tributed between 0 and 10 ms. At each VCPU switch, as well dseat® ms tick,
we check to see whether the current time has excegded\. If so, then we debit
the currently running VCPU, as it was executing when the t.ainterrupt” fired
atty, + A. Although in this case the sampling distribution is not meytess, it is
still sufficient to thwart our attacker. We assume that samgpk undetectable by
the attacker, as it causes only a brief interruption indggitishable from other asyn-
chronous events such as network interrupts. In this casétlaBoisson arrivals the
expected number of samples within any interval in a 10 m®pesiexactly propor-
tional to the duration of the interval. Our implementatidrifee uniform scheduler
quantizesA with 1 ms granularity, leaving a small vulnerability as désed in the
case of the Bernoulli scheduler. As in that case, howeveruheerability is small
enough that it may be ignored. We note also that this schedutet theft-proof
if the attacker is able to observe the sampling process. Ifeaeh the 5ms point
without being sampled, for instance, the probability ofilgecharged 10 ms in the

remaining 5ms is 1, while avoiding that charge would onlyt&ss.

2.8.3 Evaluation

We have implemented each of the four modified schedulers aon3<21. Since
the basic credit and priority boosting mechanisms have @ehimodified from the
original scheduler, our modified schedulers should reteersame fairness and I/O
performance properties of the original in the face of welkéived applications. To
verify performance in the face of ill-behaved applicatiovestested attack perfor-

mance against the new schedulers; in addition measurinpeae and 1/0 perfor-

2.8. THEFT-RESISTANT SCHEDULERS 29

mance.

Performance against attack

In Table 2.3 we see the performance of our Cycle Stealer on éimeCtedit sched-
uler and the modified schedulers. All four of the scheduleesensuccessful in
thwarting the attack: when co-located with 5 victim VMs on@&es on the un-
modified scheduler, the attacker was able to consume 85.@6iofjle-CPU with
user-level attacking and 80% with kernel-level attackibgt,no more than its fair
share on each of the modified ones. (Note that the 85.6% cquimxmwith user-
level attacking in the unmodified case was limited by the chaifs = 1 ms, and

can increase with suitably reduced values ak shown in Figure 2.7.)

Figure 2.7: Lab: User-level attack performance vs. exetintes. (note - sleep
time < 10—spin time)

100 -
90

core

(0]
o

g o ~
o O o

N W
o O
: i

7 7.5 8 8.5 9 9.5 10
Spin Time (ms)

CPU(%) Stolen of a single
N
(@)

In Table 2.4 we see similar results for the modified Dhrystattecker. Com-
pared to the baseline, the unmodified scheduler allows thekatr to steal about
85.3% CPU cycles with user-level attacking and 77.8% witm&klevel attacking;
while each of the improved schedulers limits the attackepioroximately its fair

share.

30

CHAPTER 2. SECURECLOUD

Table 2.3: Performance of the schedulers against cycliestea

CPU(%) obtained by the attacker
Scheduler (user-level) (kernel-level)

Xen Credit 85.6 78.8
Exact 32.9 33.1
Uniform 33.1 33.3
Poisson 33.0 33.2
Bernoulli 33.1 33.2

Table 2.4: Performance of the schedulers against Dhrystone

CPU(%) obtained by the attacker
Scheduler (user-level) (kernel-level)

Xen Credit 85.3 77.8
Exact 32.2 33.0
Uniform 33.0 33.4
Poisson 32.4 33.1
Bernoulli 32.5 33.3

Overhead measurement

To quantify the impact of our scheduler modifications on rarexecution (i.e.
in the absence of attacks) we performed a series of measotentedetermine
whether application or I/O performance had been degrademibghanges. Since
the primary modifications made were to interrupt-drivencarding logic in the
Xen scheduler, we examined overhead by measuring perfaeraa CPU-bound
application (unmodified Dhrystone) on Xen while using théedent scheduler.
To reduce variance between measurements (e.g. due tdrdifieache line align-
ment [97]) all schedulers were compiled into the same bimagge, and the de-
sired scheduler selected via a global configuration vagiabt at boot or compile
time.

Our modifications added overhead in the form of additiontdritupts and/or
accounting code to the scheduler, but also eliminated @it@yunting code which
had performed equivalent functions. To isolate the efféateav code from that

of the removal of existing code, we also measured versiorthefoisson and

2.8. THEFT-RESISTANT SCHEDULERS

Bernoulli schedulers (Poisson-2 and Bernoulli-2 below) Wwiperformed all ac-
counting calculations of both schedulers, discarding thgput of the original

scheduler calculations.

Results from 100 application runs for each scheduler are shiowable 2.5.
Overhead of our modified schedulers is seen to be low—weleudélo—and in
the case of the Bernoulli and Poisson schedulers is negigb¢rformance of the
Poisson and Bernoulli schedulers was unexpected, as eack acadditional 100
interrupts per second; the overhead of these interruptsaappo be comparable to
or less than the accounting code which we were able to renmogadh case. We
note that these experiments were performed with Xen runimingra-virtualized
mode; the relative cost of accounting code and interruptg Ieadifferent when

using hardware virtualization.

We analyzed the new schedulers’ I/O performances by te#timd/O latency
between two VMs in two configurations. In configuration 1, tWils executed
on the same core with no other VMs active, while in configara2 a CPU-bound
VM was added on the other core. From the first test, we expeécteee the perfor-
mance of well-behaved /O intensive applications on défeischedulers; from the
second one, we expected to see that the new schedulersthetainority boosting

mechanism.

In Table 2.6 we see the results of these measurements. ditfes in perfor-
mance were minor, and as may be seen by the overlapping cocdidetervals,

were not statistically significant.

Table 2.5: Scheduler CPU overhead, 100 data points per Selnedu

Scheduler CPU overhead (%) 95% ClI
Exact 0.50 0.24-0.76

Uniform 0.44 0.27-0.61
Poisson 0.04 -0.17-0.24
Bernoulli -0.10 -0.34-0.15
Poisson-2 0.79 0.60-0.98

Bernoulli-2 0.79 0.58-1.00

32

CHAPTER 2. SECURECLOUD

Table 2.6: 1/O latency by scheduler, with 95% confidencerviatis.

Round-trip delay 4s)

Scheduler (config. 1) (config. 2)
Unmodified Xen Credit 53 0.66 96+ 1.92
Exact 55+ 0.61 97+ 1.53
Uniform 54+ 0.66 96+ 1.40
Poisson 53k 0.66 96+ 1.40
Bernoulli 544 0.75 97+ 1.49

2.8.4 Additional discussion

A comprehensive comparison of our proposed schedulersoisrsin Table 2.7.

The Poissonscheduler seems to be the best option in practice, as it hgemo
formance overhead nor vulnerability. Even though it hagtsperiod variance, it
guarantees exactly fair share in the long run. Bleenoullischeduler would be an
alternative if the vulnerability of up to 1ms is not a concefheUniformscheduler
has similar performance to the Bernoulli one, and the impleat®n of sampling
is simpler, but it has more overhead than Poisson and Bernduaktly, the Ex-

act scheduler is the most straight-forward strategy to preegcie stealing, with a

relatively trivial implementation but somewhat higher dwead.

Table 2.7: Comparison of the new schedulers

Short-run| Long-run Low Ease of Determi- | Theft-
Schedulers fairness | fairness | overhead implementation nistic proof
Exact v v v v v
Uniform v v
Poisson v v v
Bernoulli v v

2.9 Coordinated cloud attacks

We have shown how an old vulnerability has manifested ite¢lfe modern context
of virtualization. Our attack [141] enables an attacking \f¢Msteal cycles by

gaming a vulnerability in the hypervisor’s scheduler. Wevrexplain how, given a

2.9. COORDINATED CLOUD ATTACKS

33

collection of VMs in a cloud, attacks may be coordinated st aseal the maximal

number of cycles.

Consider a customer of a cloud service provider with a cablecif VMs. Their
goal is to extract the maximal number of cycles possible fecating their compu-
tational requirements. Note that the goal of the customeotso inflict the highest
load on the cloud but to extract the maximum amount of usefukwor them-
selves. To this end they wish to steal as many cycles as pes#ib has already
been explained attacking induces an overhead and havintipfelWMs in attack
mode on the same physical host leads to higher total oventegaating the total
amount of useful work. Ideally, therefore, the customer Mdike to have exactly
one VM in attack mode per physical host with the other VMs tioréng normally

in non-attack mode.

Unfortunately, cloud providers such as Amazon’s EC2 not adgtrol the
mapping of VMs to physical hosts but also withhold informatiabout the map-
ping from their customers. As infrastructure providers tisi the right thing for
them to do. By doing so they make it harder for malicious cust@o snoop on
others. [109] show the possibility of targeting victim VMg imapping the internal
cloud infrastructure though this is much harder to impletreerccessfully in the
wild [125]. Interestingly, though our attack can be turnedits head not just to

steal cycles but also to identify co-placement. Assumeauthoss of generality

for the purposes of the rest of this discussion that hostsiagée core machines.

Recall that a regular (i.e. non-attacking) VM on a single hestapped at 38%
whereas an attacking VM obtains 87% of the cycles. Now, if @eehtwo attack-
ing VMs on the same host then they obtain about 42% each. Thegdiusively

(i.e without running any other VMs) running a pair of VMs intaatk mode one can
determine whether they are on the same physical host or epéfaiing on whether
they get 42% or 87%). Thus a customer could potentially rieryepair of VMs

and determine which VMs are on the same physical host. (Okegthis is under
the not-unreasonable assumption that only the VMs of thisqodar customer can

be in attack mode.) Note that if there ar&Ms then this scheme requir@) tests

34

CHAPTER 2. SECURECLOUD

for each pair. This leads to a natural question: what is thetrefficient way to
discover the mapping of VMs to physical host? This problemaaery clean and
beautiful formulation.

Observe that the VMs get partitioned among (an unknown nuoféhe phys-
ical hosts. And we have the flexibility to activate some stibséhe VMs in attack
mode. We assume (as is the case of Amazon’s EC2) that thereadvantage to
running any of the other VMs in normal (non-attack) mode sitiey get their fair
share (recall that in EC2 attackers only get additi@parecycles). When we acti-
vate a subset of the VMs in attack mode then we get back onéibfioomation for
each VM in the subset - namely, whether that VM is the only Vihirthe subset
on its physical host or whether there are 2 or more VMs fromstlfeset on the
same host. Thus the question now becomes: what is the fastgs$d discover the
unknown partition (of VMs among physical hosts)? We thinleath subset that
we activate as a query that takes unit time and we wish to estetest number of
queries. More formally:

Partition. You are given an unknown partitigd = {S;,S,,...,S;} of a
ground sefl ...n|. You are allowed to ask queries of this partition. Each query
a subset) = {q1,4¢2,...,} C [1...n]. When you ask the quer§ you get back
|Q] bits, a bitb; for each elemeny; € Q); let S,, denote the set of the partitic
containingg;; thenb; = 1if |Q () S,,| = 1 (and otherwiseh;, = 0 if |Q (S, | > 2).
The goal is to determine the query complexity of Partitiog.,, iyou have to fing3
using the fewest queries.

Recall that a partition is a collection of disjoint subsetsosad union is the
ground set, i.eyl < i,5,< k,S;NS; = P andJ;_, S; = [1...n]. Observe that
one can define both adaptive (where future queries are depead past answers)
and oblivious variants of Partition. Obviously, adaptiveeges have at least as
much power as oblivious queries. In the general case we d&d@Bhow nearly

tight bounds:

Theorem 1. The oblivious query complexity &artition is O(n% (log n)i) and the

adaptive query complexity d?artition is Q(—5—).

log? n

2.9. COORDINATED CLOUD ATTACKS 35

Proof Sketch: The upper bound involves the use of the probabilistic meihod
conjunction with sieving [18]. We are able to derandomiz=upper bound to pro-
duce deterministic queries, employing expander graphspasdimal estimators.
The lower bound uses an adversarial argument based on thaljlistic method

as well. O

In practice, partitions cannot be arbitrary as there is andoan the number
of VMs that a cloud service provider will map to a single hoghis leads to the
problem B-Partition where all the sets in the partition hawize at mosB. In the

special case we are able to prove tight bounds:

Theorem 2. The query complexity dB-Partition isf(logn).

Proof Sketch: The lower bound follows directly from the information-thretic
argument that there af&(2"'°s") partitions while each query returns onlyits of
information. The upper bound involves use of the probaiilimethod (though the
argument is simpler than for the general case) and can badtrazed to provide
deterministic constructions of the queries.]
Proof Sketch: We prove an upper bound @¢¥(logn) on the query complexity

of B-Partition, where the size of any set in the partition igreost B. Due to
constraints of space we exhibit a randomized constructiochi@ave the details of

a deterministic construction to [141]. First, we query thére ground sefl . .. n]

and this allows us to identify any singleton sets in the parti So now we assume
that every set in our partitions has size at least 2. Consigdairaf elements and

y belonging to different setS, andS,. Fix any other elemenf’ € S,, arbitrarily
(note that such @ exists because we assume there are no singleton sets left). A
query(is said to be aeparating witnes$or the tuple7 =< z,y,y/, S, > iff
QN S: = z andy,y’ € Q. (Observe that for any such query it will be the case
thatb, = 1 while b, = 0, hence the term “separating witness”. Observe that any
partitiond is completely determined by a set of queries with separatitigesses

for all the tuples the partition contains. Now, form a quéhby picking each

element independently and uniformly with probabilgy Consider any particular

36

CHAPTER 2. SECURECLOUD

tupleT =< z,y,y’, S, >. Then

. . . 1
Prqo(Q is a separating witness fér) > DBz

Recall that.S,| < B since we are only considering partitions whose set sizeatare
mostB. Now consider a collectio® of such queries each chosen independently

of the other. Then for a given tup®we have that

1
92B+2

Pro(Voeo@ is not a separating witness fa < (1 —)€l

But there are at mogt,") * B> < n”*? such tuples. Hence,

PrQ(HtumeTerQQ is not a separating witness f@1) <

1
9B+2

nPt % (1 —)€l

Thus by choosingQ| = O((B + 2) x 28%2 x logn) = O(logn) queries we can
ensure that the above probability is below 1, which meansttiecollectionQ
contains a separating witness for every possible tuples $hows that the query

complexity isO(logn). O

2.10 Conclusion

Scheduling has a significant impact on the fair sharing ot@ssing resources
among virtual machines and on enforcing any applicable eisags per virtual
machine. This is specially important in commercial sersiltiee computing cloud
services, where customers who pay for the same grade otsexpect to receive
the same access to resources and providers offer pricinglmddowever, the Xen
hypervisor (and perhaps others) uses a scheduling meahaviisch may fail to
detect and account for CPU usage by poorly-behaved virtuahmes, allowing
malicious customers to obtain enhanced service at the sgpgrothers.

We have demonstrated this vulnerability in the lab and on Zon& Elastic
Compute Cloud (EC2). Under laboratory conditions, we fountittieapplications

exploiting this vulnerability are able to utilize up to 98%aCPU core, regardless

2.10. CONCLUSION

37

of competition from other virtual machines. Amazon EC2 uspatahed version
of Xen, which prevents the capped amount of CPU resourceshef &Ms from

being stolen. However, our attack scheme can steal idle CRlésyo increase
its share, and obtain up to 85% of CPU resources (as mentiarédrewe have
been in discussions with Amazon about the vulnerabilityoregd in this chapter
and our recommendations for fixes; they have since implezdemfix that we have
tested and verified). We describe four approaches to eltmon¢his vulnerability,

and demonstrate their effectiveness and negligible oeerh&inally, we give an
algorithm in conjunction with our attack to discover themlacement of VMs, this

important mechanism can be utilized to conduct coordinatetks in Cloud.

Reference

[1] Amazon Elastic Compute Cloudht t p: / / aws. amazon. com ec2/ .
[2] AMD Virtualization Technology.ht t p: / / www. and. cont .

[3] Facebook placesitt p: // ww. f acebook. cont f acebookpl aces.
[4] Foursquarehttps://foursquare.cont .

[5] Gowalla.http://gowall a.cont.

[6] Microsoft Azure Services Platform. http://ww. m crosoft. conl

azur e/ def aul t . mspx.

[7] Microsoft Windows Azure Platform. http://ww. ni crosoft.com

azur e/ def aul t. mspx.

[8] Strangers helping strangers. http:// ww. f acebook. con

SHSt r angers.
[9] Yelp. http://ww. yel p. con .

[10] Method and system for protecting websites from pubtiteinet threats.

United States Patent 7,260,639, August 2007.

[11] Amazon Web Services: Overview of Security Processé882ht t p: //

devel oper. amazonwebser vi ces. com

[12] Method and system for providing on-demand contentveeyi for an origin
server. United States Patent 7,376,736, May 2008.

