
Northeastern University

Computer Science Dissertations College of Computer and Information Science

January 01, 2012

New cloud architectures for the next generation
internet
Fangfei Zhou
Northeastern University

This work is available open access, hosted by Northeastern University.

Recommended Citation
Zhou, Fangfei, "New cloud architectures for the next generation internet" (2012). Computer Science Dissertations. Paper 18.
http://hdl.handle.net/2047/d20002732

http://iris.lib.neu.edu/comp_sci_diss
http://iris.lib.neu.edu/comp_info_sci
http://hdl.handle.net/2047/d20002732

New Cloud Architectures For The Next GenerationInternet

Fangfei Zhou
Northeastern University
Boston, Massachusetts

Abstract

Cloud computing has ushered in a new paradigm with the availability of computing

as a service, letting customers share the same physical infrastructure and purchase

computing resources on demand (e.g. Amazon EC2 and Windows Azure). The

multi-tenancy property of cloud computing offers clients flexibility while creating

a unique set of challenges in areas such as reliability and security.

In this thesis we study one challenge (SecureCloud) and threeopportunities

(DNSCloud, WebCloud and SamaritanCloud). In SecureCloud we explore how

multi-tenancy, or the sharing of resources across users, can lead to the undermining

of privacy and security. Taking Amazon EC2 as an example we identify an im-

portant scheduling vulnerability in Virtual Machine Monitors (VMMs). We create

an attack scenario and demonstrate how it can be used to stealcycles in the cloud.

We also discuss how attacks can be coordinated across the cloud on a collection

of VMs. We present a general framework of solutions to combatsuch attacks.

DNSCloud, WebCloud and SamaritanCloud are proposals for new architectures

that improve delivery of existing infrastructural services and enable entirely new

functionalities. The Domain Name System (DNS) has long beenrecognized as the

Achilles’ heel of the Internet and a variety of new (cache-poisoning and other) at-

tacks surfacing over the past few years have only served to reinforce that notion.

We present DNSCloud, a new architecture for providing a more robust DNS service

that does not require a forklift upgrade (unlike DNSSEC). Today, content on Web

sites like online social networks is created at the edge of network but distributed

using a traditional client-server model. WebCloud is a novelcloud architecture that

leverages the burgeoning phenomenon of social networks forenabling a more ef-

ficient and scalable system for peer-to-peer content delivery. SamaritanCloud is a

proposal for a new architecture that exploits the mobility of personal computing

devices to share relevant locality-specific information. It allows people to offer

physical help to each other remotely, in a secure and privateway. Taken as a whole

this thesis represents a synthesis of theory and practice that will hasten the ongoing

transition to the era of cloud computing.

Introduction

1.1 Motivation

Over the past decades, data and applications have been slowly but steadily mi-

grating to the Internet (or its more fashionable synonym, the “Cloud”), with ser-

vices being delivered to end-users through a client-servermodel using standardized

over-the-web protocols. This outsourcing to the Internet continues to be a work-in-

progress with cloud-computing the phrase du jour.

Cloud computing [20] is built on top of server virtualizationtechnology [21],

which allows multiple instances of virtual machines running on a single physical

server. A cloud computing model is comprised of a front end and a back end. The

front end is the interface for users to interact with the system – for example, users

can open and edit files through browser, or remotely connect to virtual machines

to enjoy applications and other computing resources. The back end is the cloud

itself, it maintains data and applications and delivers them to end users as a service

through the Internet.

Some of the biggest cloud computing services include Web-based email (e.g.

Hotmail, Gmail), social networking (e.g. Facebook, Twitter, LinkedIn), document

hosting services, (e.g. Google Docs, Flickr, Picasa, YouTube) and back up services

(e.g. Dropbox), etc. Major corporations including Amazon,Google, Microsoft

and Oracle have invested in cloud computing services and offer individuals and

businesses a range of cloud-based solutions, e.g. Amazon EC2[1] and Microsoft

1

2 CHAPTER 1. INTRODUCTION

Azure [6]. In these services, users rent virtual machines for running their own

applications and are charged by the amount of time their virtual machine is running

(in hours or months).

Cloud computing is a new and different way to architect and remotely manage

computing resources. Therefore, it is important to study both its shortcomings and

its advantages which could help resolve current Internet issues. Here are some of

the significant advantages.

• Lower cost:Cloud computing requires lower cost for data processing when

compared with the older model of maintaining software on local machines.

The use of the cloud removes the need for purchasing softwareand hardware

and shifts the costs to a pay-per-use model.

• Mobility and flexibility:As the service is delivered through the Internet, users

can access the resources no matter where they are located. Instant deploy-

ment and the pay-as-you-go business model offer users more flexibility than

other computing services. Users do not need to worry about application in-

stallation and updates.

• More capacity:Cloud computing offers virtually limitless storage and com-

puting power, thus enhancing the user’s capability beyond the capacity of

their local machines.

• Device independence:Finally, the ultimate cloud computing advantage is

that users are no longer tethered to a single computer or network. Existing

applications and data follow users through the cloud.

On the other hand, cloud computing has created its own challenges. One of the

biggest concerns about cloud computing is security. Cloud computing also requires

a constant-on and high-bandwidth Internet connection, which is a limitation for

some clients. As data and application are stored on providerowned machines,

clients lose their control over the software and become dependent on the provider to

maintain, update and manage it. Cloud computing can also bring risks in the areas

1.2. OVERVIEW 3

of privacy and confidentiality. Clients storing their sensitive data and information

on third-party servers may become compromised if the provider has inadequate

security in terms of technology or processes.

Today’s cloud computing services are typically categorized into the following

three classes of service: Software as a Service (SaaS), Platform as a Service (PaaS)

and Infrastructure as a Service (IaaS), each with their own security issues.

• SaaS:Cloud infrastructures providing software services often employ a multi-

tenancy system architecture, where users access the same environment for

different applications. Optimization of speed, security,availability, recovery

are required in such services.

• PaaS:Cloud infrastructures allowing clients to develop cloud services and

applications should provide stable programming environment, tools and con-

figuration management.

• IaaS:Cloud infrastructures delivering virtualized resources ondemand should

meet growing or shrinking resource demand from clients, as well as guaran-

tee fair share among users.

A major shortcoming in the above approaches is the lack of effective and ef-

ficient architectures that deliver the much-touted benefitsof the cloud while over-

coming its shortcomings.

1.2 Overview

This thesis proposes new architectures for cloud-computing that not only fix ex-

isting infrastructural deficiencies but also pave the way for newer and improved

services. We present four new architectures.

SecureCloud [141]: Theft-free schedulers for multi-tenant architectures. Se-

cure Cloud explores the security issues of cloud infrastructures. In cloud computing

services, customers rent virtual machines (VMs) running onhardware owned and

4 CHAPTER 1. INTRODUCTION

managed by third-party providers, and pay for the amount of time their VM is run-

ning (in hours or months), rather than by the amount of CPU timeused. Under

this business model, the choice of scheduling algorithm of the hypervisor involves

a trade-off between factors such as fairness, usage caps andscheduling latency.

As in operating systems, a hypervisor scheduler may be vulnerable to behavior by

virtual machines which results in inaccurate or unfair scheduling. However, cloud

computing represents a new environment for such attacks fortwo reasons. First,

the economic model of many services renders them vulnerableto theft-of-service

attacks, which can be successful with far lower degrees of unfairness than required

for strong denial-of-service attacks. In addition, the lack of detailed application

knowledge in the hypervisor (e.g. to differentiate I/O waitfrom voluntary sleep)

makes it more difficult to harden a hypervisor scheduler against malicious behav-

ior. Therefore, verifying the scheduling fairness in cloudcomputing services is

very important to both the providers and the customers. In Chapter 2, we study

the scheduling algorithm used by Amazon EC2. We discover thatthe hypervisor

scheduler in Amazon EC2 is vulnerable to behavior by virtual machines which re-

sults in inaccurate or unfair scheduling. We describe our attack scenario, provide a

novel analysis of the necessary conditions for theft-of-service attacks, and propose

scheduler modifications to eliminate the vulnerability. Moreover, our attack itself

provides a mechanism for detecting the co-placement of VMs,which in conjunc-

tion with appropriate algorithms can be utilized to reveal this mapping. We present

an algorithm that is provably optimal when the maximum partition size is bounded.

In the unbounded case we show upper and lower bounds using theprobabilistic

method [18] in conjunction with a sieving technique.

DNSCloud [64]: DNS architecture protects itself from cache-poisoning at-

tacks. DNSCloud explores the domain of new cloud architectures that allow for

improved and robust Internet services. The Domain Name System or DNS [85] is

a critical and integral part of the Internet. Kaminsky [52,74,100] showed that DNS

caches throughout the world were susceptible to cache poisoning. This could lead

to large-scale impersonation attacks by fake websites. Notonly could it potentially

1.2. OVERVIEW 5

lead to the personal and financial ruin of individuals but successful poisoning of this

system could also result in catastrophic consequences at a national level [13, 81]

were any infrastructural networks such as the military network domains to be tar-

geted by an enemy. Currently, there are only two ways to mitigate this vulnerabil-

ity, patching the DNS server or patching the DNS protocol itself. Patching the DNS

protocol, i.e. substituting DNSSEC [85] instead of DNS requires a forklift upgrade

at both the client and resolving name-server ends and for nowthe world has settled

for updating and patching the DNS server software (typically BIND [85]). The

problem with the patch however, is that it requires upgradesto all client side re-

solving name servers, which is the more vulnerable and numerous end of things. In

section 3, we propose DNSCloud, a new cloud-based architecture, to dramatically

reduce the probability of suffering from a poisoned cache inthe DNS.

WebCloud [142]: P2P content delivery system for (wide-area) social networks.

Over the past few years, we have witnessed the beginnings of ashift in the patterns

of content creation and exchange over the web. Previously, content was primar-

ily created by a small set of entities and was delivered to a large audience of web

clients. Now, individual Internet clients are creating content that makes up a sig-

nificant fraction of Internet traffic [17, 47]. The net resultis that, content today is

generated by a large number of clients located at the edge of the network, is of more

uniform popularity, and exhibits a workload that is governed by the social network.

Unfortunately, existing architectures for content distribution are ill-suited for these

new patterns of content creation and exchange. In section 4.6.1, we propose We-

bCloud - a content delivery system designed for social networks. The key insight

is to leverage the spatial and temporal locality of interestbetween social network

clients.

SamaritanCloud: Location-based cyber-physical network for obtaining real-

world assistance. The tremendous rise in the popularity of social networks has been

a defining aspect of the online experience over the last few years. Social network

services provide a platform allowing for the building of social relations among

people that share similar interests and actives. More recently the phenomenon of

6 CHAPTER 1. INTRODUCTION

geosocial networking has come to the fore. These services use the GPS capabili-

ties of mobile devices to enable additional social dynamics. In geosocial network

services such as Foursquare, Gowalla, Facebook Places, andYelp [3–5,9], clients

share their current locations as well as recommendations for events, food or other

interests. In section 5 we propose not just a new architecture, but, in fact, a new

service – SamaritanCloud – the goal of which is to provide a wayfor people to con-

nect with others (possibly strangers) in a remote location and obtain (physical) help

from them. It is possible that such a service may never take off but we believe there

are several instances in which such a service can be of use to people, e.g., please

tell the marathon runner with bib #123 I will wait at the finishline; did I leave my

textbook in the restroom? is there a brown puppy roaming in the playground? Such

a service will require efficient technical solutions to problems such as scalabil-

ity, privacy, reputation etc., to overcome the social barriers of soliciting help from

strangers. We focus primarily on the technical aspects of scalability – efficiently

finding candidates for a request by comparing client profileswith request criteria;

efficiency – improving server throughput on high dimensional profiles with local-

ity sensitive hashing; and privacy – matching people with strangers in a secure and

private way so that the need for help and the ability, desire to assist are disclosed in

a safe and controlled manner.

CHAPTER 2

SecureCloud

2.1 Introduction

Server virtualization [21] enables multiple instances of an operating system and

applications (virtual machinesor VMs) to run on the same physical hardware, as

if each were on its own machine. Recently server virtualization has been used to

provide so-calledcloud computingservices, in which customers rent virtual ma-

chines running on hardware owned and managed by third-partyproviders. Two

such cloud computing services are Amazon’s Elastic Compute Cloud (EC2) service

and Microsoft Windows Azure Platform; in addition, similarservices are offered

by a number of web hosting providers (e.g. Rackspace’s Rackspace Cloud and

ServePath Dedicated Hosting’s GoGrid) and referred to as Virtual Private Servers

(VPS). In each of these services customers are charged by theamount of time their

virtual machine is running (in hours or months), rather thanby the amount of CPU

time used.

The operation of a hypervisor is in many ways similar to that of an operat-

ing system; as an operating system manages access by processes to underlying

resources, so too a hypervisor must manage access by multiple virtual machines

to a single physical machine. In either case the choice of scheduling algorithm

will involve a trade-off between factors such as fairness, usage caps and scheduling

latency.

7

8 CHAPTER 2. SECURECLOUD

As in operating systems, a hypervisor scheduler may be vulnerable to behavior

by virtual machines which results in inaccurate or unfair scheduling. Such anoma-

lies and their potential for malicious use have been recognized in the past in oper-

ating systems—McCanne and Torek [88] demonstrate a denial-of-service attack on

4.4BSD, and more recently Tsafrir [130] presents a similar attack against Linux 2.6

which was fixed only recently. Such attacks typically rely onthe use of periodic

sampling or a low-precision clock to measure CPU usage; like atrain passenger

hiding whenever the conductor checks tickets, an attackingprocess ensures it is

never scheduled when a scheduling tick occurs.

Cloud computing represents a new environment for such attacks, however, for

two reasons. First, the economic model of many services renders them vulnerable

to theft-of-service attacks, which can be successful with far lower degrees of un-

fairness than required for strong denial-of-service attacks. In addition, the lack of

detailed application knowledge in the hypervisor (e.g. to differentiate I/O wait from

voluntary sleep) makes it more difficult to harden a hypervisor scheduler against

malicious behavior.

The scheduler used by the Xen hypervisor (and with modifications by Amazon

EC2) is vulnerable to such timing-based manipulation—rather than receiving its

fair share of CPU resources, a VM running on unmodified Xen using our attack

can obtain up to 98% of total CPU cycles, regardless of the number of other VMs

running on the same core. In addition we demonstrate a kernelmodule allowing

unmodified applications to readily obtain 80% of the CPU. The Xen scheduler also

supports a non-work-conserving (NWC) mode where each VM’s CPU usage is

“capped”; in this mode our attack is able to evade its limits and use up to 85% of

total CPU cycles. The modified EC2 scheduler uses this to differentiate levels of

service; it protects other VMs from our attack, but we still evade utilization limits

(typically 40%) and consume up to 85% of CPU cycles.

We give a novel analysis of the conditions which must be present for such

attacks to succeed, and present four scheduling modifications which will prevent

this attack without sacrificing efficiency, fairness, or I/Oresponsiveness. We have

2.2. BACKGROUND 9

implemented these algorithms, and present experimental results on Xen 3.2.1.

Chapter outline: The rest of chapter is organized as follows. Section 2.2 pro-

vides a brief introduction to VMM architectures, Xen VMM andAmazon EC2 as

background. Section 2.3 discusses related work. Section 2.4 describes the details

of the Xen Credit scheduler. Section 2.5 explains our attacking scheme and Section

2.7 presents experimental results in the lab as well as on Amazon EC2. Section

2.8 details our scheduling modifications to prevent this attack, and evaluates their

performance and overhead. Section 2.9 proofs how our attacking scheme could

coordinate attacks, and we conclude in Section 2.10.

2.2 Background

We first provide a brief overview of hardware virtualizationtechnology, and of the

Xen hypervisor and Amazon’s Elastic Compute Cloud (EC2) service in particular.

2.2.1 Hardware virtualization

Hardware virtualization refers to any system which interposes itself between an

operating system and the hardware on which it executes, providing an emulated or

virtualizedview of physical resources. Almost all virtualization systems allow mul-

tiple operating system instances to execute simultaneously, each in its ownvirtual

machine(VM). In these systems a Virtual Machine Monitor (VMM), alsoknown

as ahypervisor, is responsible for resource allocation and mediation of hardware

access by the various VMs.

Modern hypervisors may be classified by the methods of executing guest OS

code without hardware access: (a) binary emulation and translation, (b) para-

virtualization, and (c) hardware virtualization support.Binary emulation exe-

cutes privileged guest code in software, typically with just-in-time translation for

speed [15]. Hardware virtualization support [2] in recent x86 CPUs supports a

privilege level beyond supervisor mode, used by the hypervisor to control guest

10 CHAPTER 2. SECURECLOUD

OS execution. Finally, para-virtualization allows the guest OS to execute directly

in user mode, but provides a set ofhypercalls, like system calls in a conventional

operating system, which the guest uses to perform privileged functions.

2.2.2 The Xen hypervisor

Xen is an open source VMM for x86/x64 [33]. It introduced para-virtualization

on the x86, using it to support virtualization of modified guest operating systems

without hardware support (unavailable at the time) or the overhead of binary trans-

lation. Above the hypervisor there are one or more virtual machines ordomains

which use hypervisor services to manipulate the virtual CPU and perform I/O.

2.2.3 Amazon Elastic Compute Cloud (EC2)

Amazon EC2 is a commercial service which allows customers to run their own

virtual machine instances on Amazon’s servers, for a specified price per hour each

VM is running. Details of the different instance types currently offered, as well as

pricing per instance-hour, are shown in Table 2.1.

Table 2.1: Amazon EC2 Instance Types and Pricing. (Spring 2012. Speed is given
in “Amazon EC2 Compute Units”.)

Instance Type Memory Cores× speed $/Hr
Small 1.7GB 1× 1 0.085
Large 7.5 2× 2 0.34
X-Large 15 4× 2 0.68
Hi-CPU Med. 1.7 2× 2.5 0.17
Hi-CPU X-Large 7 8× 2.5 0.68

Amazon states that EC2 is powered by “a highly customized version of Xen,

taking advantage of virtualization” [11]. The operating systems supported are

Linux, OpenSolaris, and Windows Server 2003; Linux instances (and likely Open-

Solaris) use Xen’s para-virtualized mode, and it is suspected that Windows in-

stances do so as well [25].

2.3. RELATED WORK 11

2.3 Related work

To the best of our knowledge, our work is the first to show how a deliberately

misbehaving VM can unfairly monopolize CPU resources in a virtualized environ-

ment, with important implications for Cloud Computing environment. However,

the concept of a timing attack long predates computers. Tsafrir et al. [130] de-

signed a cheat attack based on a similar scenario in context of processes on the

Linux 2.6 scheduler, allowing an attacking process to appear to consume no CPU

and receive higher priority. McCanne and Torek [88] present the same cheat attack

on 4.4BSD, and develop a uniform randomized sampling clock toestimate CPU

utilization. They describe sufficient conditions for this estimate to be accurate, but

unlike section 2.8.2 they do not examine conditions for a theft-of-service attack.

Cherkasova and Guptaet al. [31,32] have done an extensive performance analysis

of scheduling in the Xen VMM. They studied I/O performance for the three sched-

ulers: BVT, SEDF and Credit scheduler. Their work showed that both the CPU

scheduling algorithm and the scheduler parameters drastically impact the I/O per-

formance. Furthermore, they stressed that the I/O model on Xen remains an issue

in resource allocation and accounting among VMs. Since Domain-0 is indirectly

involved in servicing I/O for guest domains, I/O intensive domains may receive ex-

cess CPU resources by focusing on the processing resources used by Domain-0 on

behalf of I/O bound domains. To tackle this problem, Guptaet al. [40] introduced

the SEDF-DC scheduler, derived from Xen’s SEDF scheduler, that charges guest

domains for the time spent in Domain-0 on their behalf. Govindanet al. [57] pro-

posed a CPU scheduling algorithm as an extension to Xen’s SEDFscheduler that

preferentially schedules I/O intensive domains. The key idea behind their algorithm

is to count the number of packets flowing into or out of each domain and to sched-

ule the one with highest count that has not yet consumed its entire slice. However,

Ongaroet al. [101] pointed out that this scheme is problematic when bandwidth-

intensive and latency-sensitive domains run concurrentlyon the same host - the

bandwidth-intensive domains are likely to take priority over any latency-sensitive

12 CHAPTER 2. SECURECLOUD

domains with little I/O traffic. They explored the impact of VMM scheduler on I/O

performance using multiple guest domains concurrently running different types of

applications and evaluated 11 different scheduler configurations within Xen VMM

with both the SEDF and Credit schedulers. They also proposed multiple methods to

improve I/O performance. Wenget al. [134] found from their analysis that Xen’s

asynchronous CPU scheduling strategy wastes considerable physical CPU time.

To fix this problem, they presented a hybrid scheduling framework that groups

VMs into high-throughput type and concurrent type and determines processing re-

source allocation among VMs based on type. In a similar vein Kim et al. [77]

presented a task-aware VM scheduling mechanism to improve the performance of

I/O-bound tasks within domains. Their approach employs gray-box techniques to

peer into VMs and identify I/O-bound tasks in mixed workloads. There are some

configurations and policies [70,95,111] proposed to improve Xen security in other

perspectives but not scheduling attacks. Very recently, Ristenpartet al. [109] in-

stantiate new VMs on EC2 until one is placed co-resident with the target; they then

show that known cross-VM side-channel attacks can extract information from the

target. However the side-channel attacks were carried out on carefully controlled

machines in the lab, not on EC2, and are likely to be significantly more difficult

in practice [125], while, our exploit is directly applicable to EC2. We show that

our exploit can be used to infer the mapping of VMs to physicalhosts (Partition)

and this information can then be used to amplify our scheduling attack into a co-

ordinated siege by a collection of VMs. Although there is significant literature on

similar problems for contention resolution in multiple-access channels [59,60,79],

to the best of our knowledge Partition has not been studied earlier.

2.4. XEN CREDIT SCHEDULER ANALYSIS 13

2.4 Xen Credit Scheduler analysis

In Xen (and other hypervisors) a single virtual machine consists of one or more

virtual CPUs (VCPUs); the goal of the scheduler is to determinewhich VCPU to

execute on each physical CPU (PCPU) at any instant. To do this itmust deter-

mine which VCPUs are idle and which are active, and then from the active VCPUs

choose one for each PCPU.

In a virtual machine, a VCPU is idle when there are no active processes running

on it and the scheduler on that VCPU is running itsidle task. On early systems the

idle task would loop forever; on more modern ones it executesa HALT instruction,

stopping the CPU in a lower-power state until an interrupt is received. On a fully-

virtualized system this HALT traps to the hypervisor and indicates the VCPU is

now idle; in a para-virtualized system a direct hypervisor call is used instead. When

an exception (e.g. timer or I/O interrupt) arrives, that VCPUbecomes active until

HALT is invoked again.

By default Xen uses the Credit scheduler [31], an implementation of the classic

token bucketalgorithm in which credits arrive at a constant rate, are conserved up

to a maximum, and are expended during service. Each VCPU receives credits at

an administratively determined rate, and a periodic scheduler tick debits credits

from the currently running VCPU. If it has no more credits, thenext VCPU with

available credits is scheduled. Every 3 ticks the schedulerswitches to the next

runnable VCPU in round-robin fashion, and distributes new credits, capping the

credit balance of each VCPU at 300 credits. Detailed parameters (assuming even

weights) are:

Fast tick period: 10ms

Slower (rescheduling) tick: 30ms

Credits debited per fast tick: 100

Credit arrivals per fast tick: 100/N

Maximum credits: 300

14 CHAPTER 2. SECURECLOUD

where N is the number of VCPUs per PCPU. The fast tick decrementsthe running

VCPU by 100 credits every 10 ms, giving each credit a value of 100µs of CPU

time; the cap of 300 credits corresponds to 30 ms, or a full scheduling quantum.

Based on their credit balance, VCPUs are divided into three states: UNDER, with

a positive credit balance,OVER, or out of credits, andBLOCKEDor halted.

The VCPUs on a PCPU are kept in an ordered list, with those in UNDER state

ahead of those in OVER state; the VCPU at the head of the queue isselected for

execution. In work conserving mode, when no VCPUs are in the UNDER state,

one in the OVER state will be chosen, allowing it to receive more than its share of

CPU. In non-work-conserving (NWC) mode, the PCPU will go idle instead.

Figure 2.1: Per-PCPU Run Queue Structure

�� �� �� �� �� �� ��
��		
��

���

�
�
�	
����

�����

�	
������

�����������
�

�
�

�
��������
�
	�����
�

����
�

����

��
��!���������
	
"�����#��	
����

��
��!������
	
"�����#��	
�����

��
���

��

�
$% �&'$% ���()

��

���������������
�

The executing VCPU leaves the run queue head in one of two ways:by going

idle, or when removed by the scheduler while it is still active. VCPUs which go

idle enter the BLOCKED state and are removed from the queue. Active VCPUs are

enqueued after all other VCPUs of the same state—OVER or UNDER—as shown

in Figure 2.1.

The basic credit scheduler accurately distributes resources between CPU-

intensive workloads, ensuring that a VCPU receivingk credits per 30 ms epoch

will receive at leastk/10ms of CPU time within a period of 30N ms. This fair-

ness comes at the expense of I/O performance, however, as events such as packet

reception may wait as long as 30N ms for their VCPU to be scheduled.

2.5. ANATOMY OF AN ATTACK 15

To achieve better I/O latency, the Xen Credit scheduler attempts to prioritize

such I/O. When a VCPU sleeps waiting for I/O it will typically have remaining

credits; when it wakes with remaining credits it enters the BOOST state and may

immediately preempt running or waiting VCPUs with lower priorities. If it goes

idle again with remaining credits, it will wake again in BOOSTpriority at the next

I/O event.

This allows I/O-intensive workloads to achieve very low latency, consuming

little CPU and rarely running out of credits, while preserving fair CPU distribution

among CPU-bound workloads, which typically utilize all their credits before being

preempted. However, as we describe in the following section, it also allows a VM

to “steal” more than its fair share of CPU time.

2.5 Anatomy of an attack

Although the Credit scheduler provides fairness and low I/O latency for well-

behaved virtual machines, poorly-behaved ones can evade its fairness guarantees.

In this section we describe the features of the scheduler which render it vulnerable

to attack, formulate an attack scheme, and present results showing successful theft

of service both in the lab and in the field on EC2 instances. Our attack relies on pe-

riodic sampling as used by the Xen scheduler, and is shown as atimeline in Figure

2.2. Every 10 ms the scheduler tick fires and schedules the attacking VM, which

runs for10 − εms and then callsHalt() to briefly go idle, ensuring that another

VM will be running at the next scheduler tick. Our attack is self-synchronizing due

to wake-up after a scheduling tick. In theory the efficiency of this attack increases

asε approaches 0; however in practice some amount of timing jitter is found, and

overly small values ofε increase the risk of the VM being found executing when

the scheduling tick arrives.

When perfectly executed on the non-BOOST credit scheduler, this ensures that

the attacking VM will never have its credit balance debited.If there areN VMs

with equal shares, then the N-1 victim VMs will receive credits at a total rate of

16 CHAPTER 2. SECURECLOUD

Figure 2.2: Attack Timing

����
�� � � 	��	
�����
�� ��

������
��

�
���
����
��
�

	��	
����
�	����
�

	��	
����
�
���
���

������
����
���
�	����

���
���
�� ���
���
�� ��������
���
�	����

	��	
����������

�
���
����
��
�

����

�����

N−1
N

, and will be debited at a total rate of1.

This vulnerability is due not only to the predictability of the sampling, but to

the granularity of the measurement. If the time at which eachVM began and fin-

ished service were recorded with a clock with the same 10 ms resolution, the attack

would still succeed, as the attacker would have a calculatedexecution time of0 on

transition to the next VM.

This attack is more effective against the actual Xen scheduler because of its

BOOST priority mechanism. When the attacking VM yields the CPU,it goes idle

and waits for the next timer interrupt. Due to a lack of information at the VM

boundary, however, the hypervisor is unable to distinguishbetween a VM waking

after a deliberate sleep period—a non-latency-sensitive event—and one waking for

e.g. packet reception. The attacker thus wakes in BOOST priority and is able to

preempt the currently running VM, so that it can execute for10− εms out of every

10 ms scheduler cycle.

2.6. IMPLEMENTATION 17

2.6 Implementation

2.6.1 User-level

To examine the performance of our attack scenario in practice, we implement it

using both user-level and kernel-based code and evaluate them in the lab and on

Amazon EC2. In each case we test with two applications: a simple loop we refer

to as “Cycle Counter” described below, and the Dhrystone 2.1 [133] CPU bench-

mark. Our attack described in Section 2.5 requires millisecond-level timing in order

to sleep before the debit tick and then wake again at the tick;it performs best ei-

ther with a tick-less Linux kernel [117] or with the kernel timer frequency set to

1000 Hz.

prev=rdtsc()

loop:

if (rdtsc() - prev) > 9ms

prev = rdtsc()

usleep(0.5ms)

2.6.2 Kernel-level

To implement kernel-level attack, the most basic way to do isthat to add files to the

kernel source tree and modify kernel configuration to include the new files in com-

pilation. However, most Unix kernels are monolithic. The kernel itself is a piece

of compact code, in which all functions share a common space and are tightly re-

lated. When the kernel needs to be updated, all the functions must be relinked

and reinstalled and the system rebooted before the change can take affect. This

makes modifying kernel level code difficult, especially when the change is made

to a kernel which is not in user’s control. Loadable kernel module (LKM) allows

developers to make change to kernel when it is running. LKM isan object file that

contains code to extend the running kernel of an operating system. LKMs are typ-

ically used for one of the three functionalities : device drivers, filesystem drivers

18 CHAPTER 2. SECURECLOUD

and system calls. Some of the advantages of using loadable kernel modules rather

than modifying the base kernel are: (1) No kernel recompilation is required. (2)

New kernel functionality can be added without root privileges. (3) New functional-

ity takes effect right after module installation, no rebootis required. (4) LKM can

be reloaded at run time, it does not add to the size of kernel permanently.

The attack is implemented as a kernel thread which invokes anOS sleep for

10 - ε ms, allowing user applications to run, and then invokes theSCHED_block

hypercall via the safe halt function. In practiceε must be higher than for the user-

mode attack, due to timing granularity and jitter in the kernel.

loop:

msleep(8);

safe_halt();

In theory the lessε is in kernel module implementation, the more CPU cycles

the user application could consume. However due to our evaluation of msleep,

there is a 1ms timing jitter in kernel.msleep(8)allows the kernel thread to wake

up on time and temporarily pause all user applications. Thenthe VM is considered

as idle and gets swapped out before debit tick happens. Sincemsleep(9)does not

guarantee the thread wake up before the debit tick every time, thus the attacking

VM may not be swapped in/swapped out as expected. According to this observa-

tion, ε = 2 is a safe choice in implementation for kernel 2.6.

2.7 Evaluation

2.7.1 User-level

Experiments in the lab

Our first experiments evaluate our attack against unmodifiedXen in the lab in work-

conserving mode, verifying the ability of the attack to bothdeny CPU resources to

2.7. EVALUATION 19

competing “victim” VMs, and to effectively use the “stolen”CPU time for com-

putation. All experiments were performed on Xen 3.2.1, on a 2-core 2.7 GHz Intel

Core2 CPU. Virtual machines were 32-bit, para-virtualized, single-VCPU instances

with 192 MB memory, each running Suse 11.0 Core kernel 2.6.25 with a 1000 Hz

kernel timer frequency. To test our ability to steal CPU resources from other VMs,

we implement a “Cycle Counter”, which performs no useful work,but rather spins

using the RDTSC instruction to read the timestamp register and track the time dur-

ing which the VM is scheduled. The attack is performed by a variant of this code,

“Cycle Stealer”, which tracks execution time and sleeps onceit has been sched-

uled for10 − ε (hereε = 1 ms). Note that the sleep time is slightly less thanε, as

the process will be woken at the next OS tick after timer expiration and we wish

to avoid over-sleeping. In Figure 2.3a we see attacker and victim performance on

our 2-core test system. As the number of victims increases, attacker performance

remains almost constant at roughly 90% of a single core, while the victims share

the remaining core.

To measure the ability of our attack to effectively use stolen CPU cycles, we em-

bed the attack within the Dhrystone benchmark. By comparing the time required

for the attacker and an unmodified VM to complete the same number of Dhrys-

tone iterations, we can determine thenet amount of work stolen by the attacker.

Our baseline measurement was made with one VM running unmodified Dhrys-

tone, with no competing usage of the system; it completed1.5 × 109 iterations in

208.8 seconds. When running6 unmodified instances, three for each core, each

completed the same1.5 × 109 iterations in640.8 seconds on average—32.6% the

baseline speed, or close to the expected fair share performance of33.3%. With one

modified attacker instance competing against5 unmodified victims, the attacker

completed in245.3 seconds, running at a speed of85.3% of baseline, rather than

33.3%, with a corresponding decrease in victim performance. Fullresults for ex-

periments with 0 to 5 unmodified victims and the modified Dhrystone attacker are

shown in Figure 2.3b. In the modified Dhrystone attacker the TSC register is sam-

pled once for each iteration of a particular loop, as described in the appendix; if this

20 CHAPTER 2. SECURECLOUD

Figure 2.3: Lab experiments (User Level) - CPU and application performance for
attacker and victims.

(a) CPU (cycle stealer)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5

C
P

U
 (

%
)

of
 a

 s
in

gl
e

co
re

Number of victims on the same hardware

Attacker
Victims

FairShare

(b) Application (Dhrystone)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5

D
hr

ys
to

ne
s

/ s
ec

 (
*1

06)

Number of victims on the same hardware

Attacker
Victims

sampling occurs too slowly the resulting timing inaccuracymight affect results. To

determine whether this might occur, lengths of the compute and sleep phases of the

attack were measured. Almost all (98.8%) of the compute intervals were found to

lie within the bounds9±0.037ms, indicating that the Dhrystone attack was able to

attain timing precision comparable to that of Cycle Stealer.As described in Section

2.5, the attacker runs for a period of length10− εms and then briefly goes to sleep

to avoid the sampling tick. A smaller value ofε increases the CPU time stolen by

the attacker; however, too small anε increases the chance of being charged due to

2.7. EVALUATION 21

timing jitter. To examine this trade-off we tested values of10 − ε between7 and

9.9ms. Figure 2.7 shows that under lab conditions the peak valuewas98% with

an execution time of9.8ms and a requested sleep time of0.1ms. When execution

time exceeded9.8ms the attacker was seen by sampling interrupts with high prob-

ability. In this case it received only about21% of one core, or even less than the

fair share of33.3%.

Experiments on Amazon

We evaluate our attacking using Amazon EC2 Small instances with the following

attributes:32-bit, 1.7GB memory,1 VCPU, running Amazon’s Fedora Core8 ker-

nel 2.6.18, with a 1000 Hz kernel timer. We note that the VCPU provided to the

Small instance is described as having “1 EC2 Compute Unit”, while the VCPUs

for larger and more expensive instances are described as having 2 or 2.5 com-

pute units; this indicates that the scheduler is being used in non-work-conserving

mode to throttle Small instances. To verify this hypothesis, we ran Cycle Stealer

in measurement (i.e. non-attacking) mode on multiple Smallinstances, verifying

that these instances are capped to less than1
2

of a single CPU core—in particular,

approximately38% on the measured systems. We believe that the nominal CPU

cap for 1-unit instances on the measured hardware is 40%, corresponding to an un-

throttled capacity of 2.5 units. Additional experiments were performed on a set of

8 Small instances co-located on a single 4-core2.6GHz physical system provided

by our partners at Amazon.1 The Cycle Stealer and Dhrystone attacks measured in

the lab were performed in this configuration, and results areshown in Figure 2.4a

and Figure 2.4b, respectively. We find that our attack is ableto evade the CPU cap

of 40% imposed by EC2 on Small instances, obtaining up to 85% ofone core in

the absence of competing VMs. When co-located CPU-hungry “victim” VMs were

present, however, EC2 performance diverged from that of unmodified Xen. As seen

in Figures 2.4a and 2.4b, co-located VM performance was virtually unaffected by

1 This configuration allowed direct measurement of attack impact on co-located “victim” VMs,
as well as eliminating the possibility of degrading performance of other EC2 customers.

22 CHAPTER 2. SECURECLOUD

our attack. Although this attack was able to steal cycles from EC2, it was unable to

steal cycles from other EC2 customers.

Figure 2.4: Amazon EC2 experiments - CPU and application performance for at-
tacker and victims.

(a) CPU (cycle stealer)

 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

 1 2 3 4 5 6 7

C
P

U
 (

%
)

of
 a

 s
in

gl
e

co
re

Number of victims on the same hardware

Attacker
Victims

(b) Application (Dhrystone)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7

D
hr

ys
to

ne
s

/ s
ec

 (
*1

06)

Number of victims on the same hardware

Attacker
Victims

2.7.2 Kernel-level

Lab experiments were performed with one attacking VM, whichloads the kernel

module, and up to 5 victims running a simple CPU-bound loop. Inthis case the

fair CPU share for each guest instance on our 2-core test system would be200
N

%

of a single core, whereN is the total number of VMs. Due to the granularity of

2.7. EVALUATION 23

kernel timekeeping, requiring a largerε, the efficiency of the kernel-mode attack is

slightly lower than that of the user-mode attack. We evaluate the kernel level at-

tacking with Cycle Stealer in measurement (non-attacking) mode and unmodified

Dhrystone. In our tests, the attacker consumed up to 80.0% ofa single core, with

the remaining CPU time shared among the victim instances; results are shown in

Figure 2.5a. The average amount of CPU stolen by the attacker decreases slightly

(from 80.0% to 78.2%) as the number of victims increases; we speculate that this

may be due to increased timing jitter causing the attacker tooccasionally be charged

by the sampling tick. The current implementation of the kernel module does not

succeed in stealing cycles on Amazon EC2. We dig into Amazon EC2kernel syn-

chronization and our analysis of timing traces indicates a lack of synchronization of

the attacker to the hypervisor tick, as seen for NWC mode in thelab, below; in this

case, however, synchronization was never achieved. The user-level attack displays

strong self-synchronizing behavior, aligning almost immediately to the hypervisor

tick; we are investigating approaches to similarly strengthen self-synchronizing in

the kernel module.

Table 2.2: Lab: Attack performance in non-work-conservingmode with 33.3%
limit.

Cycle Stealer Dhrystones % of
(% of 1 core achieved) per second baseline

attacker 81.0 5749039 80.0
victims 23.4 1658553 23.1

2.7.3 Non-work conserving mode

As with most hypervisors, Xen CPU scheduling can be configuredin two modes:

work-conserving mode and non-work-conserving mode [42]. In order to opti-

mize scheduling and allow near native performance, work-conserving scheduling

schemes are efficient and do not waste any processing cycles.As long as there

are instructions to be executed and there is enough CPU capacity, work-conserving

schemes assign instructions to physical CPU to be carried out. Otherwise the in-

24 CHAPTER 2. SECURECLOUD

Figure 2.5: Lab experiments (Kernel Level) - CPU and application performance for
attacker and victims.

(a) CPU (Cycle Counter)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5

C
P

U
 (

%
)

of
 a

 s
in

gl
e

co
re

Number of victims on the same hardware

Attacker
Victims

FairShare

(b) Application (Dhrystone)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5

D
hr

ys
to

ne
s

/ s
ec

 (
*1

06)

Number of victims on the same hardware

Attacker
Victims

structions will be queued and will be executed based on theirpriority. In con-

trast, non-work-conserving schemes allow CPU resources to go unused. In such

schemes, there is no advantage to execute an instruction sooner. Usually, the CPU

resources are allocated to VMs in proportion to their weights, e.g. two VMs with

equal weight will own 50% each of CPU. When one VM goes idle, instead of ob-

taining the free cycles, the other VM is capped to its 50% sharing. Our attack pro-

gram helps a VM to evade its capacity cap and obtain more, no matter if other VMs

are busy or idle. Additional experiments were performed to examine our attack per-

2.8. THEFT-RESISTANT SCHEDULERS 25

formance against the Xen scheduler in non-work-conservingmode. One attacker

and 5 victims were run on our 2-core test system, with a CPU cap of 33% set for

each VM; results are presented in Table 2.2 for both Cycle Stealer and Dhrystone

attackers, including user-level and kernel-level implementation. With a per-VM

CPU cap of 33%, the attacker was able to obtain 80% of a single core, as well.

In each case the primary limitation on attack efficiency is the granularity of kernel

timekeeping; we speculate that by more directly manipulating the hypervisor timer

it would be possible to increase efficiency. In non-work-conserving case, when a

virtual machine running attacking program yields CPU, thereis a chance (based

on our experiment results, not often though) that reschedule does not happen, the

attacking VM is still considered as the scheduled VM when debit tick happens and

gets debited. In other words, non-work-conserving mode does not stop our attack,

but adds some interferences. In addition we note that it often appeared to take sec-

onds or longer for the attacker to synchronize with the hypervisor tick and evade

resource caps, while the user-level attack succeeds immediately.

2.8 Theft-resistant Schedulers

The class of theft-of-service attacks on schedulers which we describe is based on

a process or virtual machine voluntarily sleeping when it could have otherwise re-

mained scheduled. As seen in Figure 2.6, this involves a tradeoff—the attack will

only succeed if the expected benefit of sleeping forTsleep is greater than the guar-

anteed cost of yielding the CPU for that time period. If the scheduler is attempting

to provide each user with its fair share based on measured usage, then sleeping for

a durationt must reduce measured usage by more thant in order to be effective.

Conversely, a scheduler which ensures that yielding the CPU will never reduce

measured usage more than the sleep period itself will be resistant to such attacks.

This is a broader condition than that of maintaining an unbiased estimate of

CPU usage, which is examined by McCanne and Torek [88]. Some theft-resistant

schedulers, for instance, may over-estimate the CPU usage ofattackers and give

26 CHAPTER 2. SECURECLOUD

Figure 2.6: Attacking trade-offs. The benefit of avoiding sampling with probability
P must outweigh the cost of forgoingTsleep CPU cycles.

them less than their fair share. In addition, for schedulerswhich do not meet our

criteria, if we can bound the ratio of sleep time to measurement error, then we can

establish bounds on the effectiveness of a timing-based theft-of-service attack.

2.8.1 Exact scheduler

The most direct solution is theExact scheduler: using a high-precision clock (in

particular, the TSC) to measure actual CPU usage when a scheduler tick occurs or

when a VCPU yields the CPU and goes idle, thus ensuring that an attacking VM

is always charged for exactly the CPU time it has consumed. In particular, this

involves adding logic to the Xen scheduler to record a high-precision timestamp

when a VM begins executing, and then calculate the duration of execution when

it yields the CPU. This is similar to the approach taken in e.g.the recent tickless

Linux kernel [117], where timing is handled by a variable interval timer set to fire

when the next event is due rather than using a fixed-period timer tick.2

2.8.2 Randomized schedulers

An alternative to precise measurement is to sample as before, but on a random

schedule. If this schedule is uncorrelated with the timing of an attacker, then over

2Although Kim et al. [77] use TSC-based timing measurements in their modifications to the
Xen scheduler, they do not address theft-of-service vulnerabilities.

2.8. THEFT-RESISTANT SCHEDULERS 27

sufficiently long time periods we will be able to estimate theattacker’s CPU us-

age accurately, and thus prevent attack. Assuming a fixed charge per sample, and

an attack pattern with periodTcycle, the probabilityP of the sampling timer falling

during the sleep period must be no greater than the fraction of the cycleTsleep

Tcycle
which

it represents.

Poisson Scheduler:This leads to a Poisson arrival process for sampling, where

the expected number of samples during an interval is exactlyproportional to its

duration, regardless of prior history. This leads to an exponential arrival time dis-

tribution,

∆T =
−lnU
λ

whereU is uniform on (0,1) andλ is the rate parameter of the distribution. We

approximate such Poisson arrivals by choosing the inter-arrival time according to a

truncated exponential distribution, with a maximum of 30 msand a mean of 10 ms,

allowing us to retain the existing credit scheduler structure. Due to the possibility

of multiple sampling points within a 10 ms period we use a separate interrupt for

sampling, rather than re-using or modifying the existing Xen 10 ms interrupt.

Bernoulli Scheduler: The discrete-time analog of the Poisson process, the

Bernoulli process, may be used as an approximation of Poisson sampling. Here

we divide time into discrete intervals, sampling at any interval with probabilityp

and skipping it with probabilityq = 1-p. We have implemented a Bernoulli sched-

uler with a time interval of 1 ms, sampling withp = 1
10

, or one sample per 10 ms,

for consistency with the unmodified Xen Credit scheduler. Rather than generate a

timer interrupt with its associated overhead every 1 ms, we use the same implemen-

tation strategy as for the Poisson scheduler, generating aninter-arrival time variate

and then setting an interrupt to fire after that interval expires. By quantizing time

at a 1 ms granularity, our Bernoulli scheduler leaves a small vulnerability, as an

attacker may avoid being charged during any 1 ms interval by sleeping before the

end of the interval. Assuming that (as in Xen) it will not resume until the beginning

of the next 10 ms period, this limits an attacker to gaining nomore than 1 ms every

10 ms above its fair share, a relatively insignificant theft of service.

28 CHAPTER 2. SECURECLOUD

Uniform Scheduler: The final randomized scheduler we propose is theUniform

scheduler, which distributes its sampling uniformly across 10 ms scheduling inter-

vals. Rather than generating additional interrupts, or modifying the time at which

the existing scheduler interrupt fires, we perform samplingwithin the virtual ma-

chine switch code as we did for the exact scheduler. In particular, at the beginning

of each 10 ms interval (timet0) we generate a random offset∆ uniformly dis-

tributed between 0 and 10 ms. At each VCPU switch, as well as at the 10 ms tick,

we check to see whether the current time has exceededt0 +∆. If so, then we debit

the currently running VCPU, as it was executing when the “virtual interrupt” fired

at t0 + ∆. Although in this case the sampling distribution is not memoryless, it is

still sufficient to thwart our attacker. We assume that sampling is undetectable by

the attacker, as it causes only a brief interruption indistinguishable from other asyn-

chronous events such as network interrupts. In this case, aswith Poisson arrivals the

expected number of samples within any interval in a 10 ms period is exactly propor-

tional to the duration of the interval. Our implementation of the uniform scheduler

quantizes∆ with 1 ms granularity, leaving a small vulnerability as described in the

case of the Bernoulli scheduler. As in that case, however, thevulnerability is small

enough that it may be ignored. We note also that this scheduler is not theft-proof

if the attacker is able to observe the sampling process. If wereach the 5 ms point

without being sampled, for instance, the probability of being charged 10 ms in the

remaining 5 ms is 1, while avoiding that charge would only cost 5 ms.

2.8.3 Evaluation

We have implemented each of the four modified schedulers on Xen 3.2.1. Since

the basic credit and priority boosting mechanisms have not been modified from the

original scheduler, our modified schedulers should retain the same fairness and I/O

performance properties of the original in the face of well-behaved applications. To

verify performance in the face of ill-behaved applicationswe tested attack perfor-

mance against the new schedulers; in addition measuring overhead and I/O perfor-

2.8. THEFT-RESISTANT SCHEDULERS 29

mance.

Performance against attack

In Table 2.3 we see the performance of our Cycle Stealer on the Xen Credit sched-

uler and the modified schedulers. All four of the schedulers were successful in

thwarting the attack: when co-located with 5 victim VMs on 2 cores on the un-

modified scheduler, the attacker was able to consume 85.6% ofa single-CPU with

user-level attacking and 80% with kernel-level attacking ,but no more than its fair

share on each of the modified ones. (Note that the 85.6% consumption with user-

level attacking in the unmodified case was limited by the choice ofε = 1ms, and

can increase with suitably reduced values ofε as shown in Figure 2.7.)

Figure 2.7: Lab: User-level attack performance vs. executetimes. (note - sleep
time≤ 10−spin time)

7 7.5 8 8.5 9 9.5 10
20
30
40
50
60
70
80
90

100

Spin Time (ms)C
P

U
(%

)
S

to
le

n
of

 a
 s

in
gl

e
co

re

In Table 2.4 we see similar results for the modified Dhrystoneattacker. Com-

pared to the baseline, the unmodified scheduler allows the attacker to steal about

85.3% CPU cycles with user-level attacking and 77.8% with kernel-level attacking;

while each of the improved schedulers limits the attacker toapproximately its fair

share.

30 CHAPTER 2. SECURECLOUD

Table 2.3: Performance of the schedulers against cycle stealer

CPU(%) obtained by the attacker
Scheduler (user-level) (kernel-level)

Xen Credit 85.6 78.8
Exact 32.9 33.1

Uniform 33.1 33.3
Poisson 33.0 33.2

Bernoulli 33.1 33.2

Table 2.4: Performance of the schedulers against Dhrystone

CPU(%) obtained by the attacker
Scheduler (user-level) (kernel-level)

Xen Credit 85.3 77.8
Exact 32.2 33.0

Uniform 33.0 33.4
Poisson 32.4 33.1

Bernoulli 32.5 33.3

Overhead measurement

To quantify the impact of our scheduler modifications on normal execution (i.e.

in the absence of attacks) we performed a series of measurements to determine

whether application or I/O performance had been degraded byour changes. Since

the primary modifications made were to interrupt-driven accounting logic in the

Xen scheduler, we examined overhead by measuring performance of a CPU-bound

application (unmodified Dhrystone) on Xen while using the different scheduler.

To reduce variance between measurements (e.g. due to differing cache line align-

ment [97]) all schedulers were compiled into the same binaryimage, and the de-

sired scheduler selected via a global configuration variable set at boot or compile

time.

Our modifications added overhead in the form of additional interrupts and/or

accounting code to the scheduler, but also eliminated otheraccounting code which

had performed equivalent functions. To isolate the effect of new code from that

of the removal of existing code, we also measured versions ofthe Poisson and

2.8. THEFT-RESISTANT SCHEDULERS 31

Bernoulli schedulers (Poisson-2 and Bernoulli-2 below) which performed all ac-

counting calculations of both schedulers, discarding the output of the original

scheduler calculations.

Results from 100 application runs for each scheduler are shown in Table 2.5.

Overhead of our modified schedulers is seen to be low—well under 1%—and in

the case of the Bernoulli and Poisson schedulers is negligible. Performance of the

Poisson and Bernoulli schedulers was unexpected, as each incurs an additional 100

interrupts per second; the overhead of these interrupts appears to be comparable to

or less than the accounting code which we were able to remove in each case. We

note that these experiments were performed with Xen runningin para-virtualized

mode; the relative cost of accounting code and interrupts may be different when

using hardware virtualization.

We analyzed the new schedulers’ I/O performances by testingthe I/O latency

between two VMs in two configurations. In configuration 1, twoVMs executed

on the same core with no other VMs active, while in configuration 2 a CPU-bound

VM was added on the other core. From the first test, we expectedto see the perfor-

mance of well-behaved I/O intensive applications on different schedulers; from the

second one, we expected to see that the new schedulers retainthe priority boosting

mechanism.

In Table 2.6 we see the results of these measurements. Differences in perfor-

mance were minor, and as may be seen by the overlapping confidence intervals,

were not statistically significant.

Table 2.5: Scheduler CPU overhead, 100 data points per scheduler.

Scheduler CPU overhead (%) 95% CI
Exact 0.50 0.24 – 0.76

Uniform 0.44 0.27 – 0.61
Poisson 0.04 -0.17 – 0.24

Bernoulli -0.10 -0.34 – 0.15
Poisson-2 0.79 0.60 – 0.98

Bernoulli-2 0.79 0.58 – 1.00

32 CHAPTER 2. SECURECLOUD

Table 2.6: I/O latency by scheduler, with 95% confidence intervals.

Round-trip delay (µs)
Scheduler (config. 1) (config. 2)

Unmodified Xen Credit 53± 0.66 96± 1.92
Exact 55± 0.61 97± 1.53

Uniform 54± 0.66 96± 1.40
Poisson 53± 0.66 96± 1.40

Bernoulli 54± 0.75 97± 1.49

2.8.4 Additional discussion

A comprehensive comparison of our proposed schedulers is shown in Table 2.7.

The Poissonscheduler seems to be the best option in practice, as it has noper-

formance overhead nor vulnerability. Even though it has short-period variance, it

guarantees exactly fair share in the long run. TheBernoulli scheduler would be an

alternative if the vulnerability of up to 1ms is not a concern. TheUniformscheduler

has similar performance to the Bernoulli one, and the implementation of sampling

is simpler, but it has more overhead than Poisson and Bernoulli. Lastly, theEx-

act scheduler is the most straight-forward strategy to preventcycle stealing, with a

relatively trivial implementation but somewhat higher overhead.

Table 2.7: Comparison of the new schedulers

Short-run Long-run Low Ease of Determi- Theft-
Schedulers fairness fairness overhead implementation nistic proof

Exact X X X X X

Uniform X X

Poisson X X X

Bernoulli X X

2.9 Coordinated cloud attacks

We have shown how an old vulnerability has manifested itselfin the modern context

of virtualization. Our attack [141] enables an attacking VMto steal cycles by

gaming a vulnerability in the hypervisor’s scheduler. We now explain how, given a

2.9. COORDINATED CLOUD ATTACKS 33

collection of VMs in a cloud, attacks may be coordinated so asto steal the maximal

number of cycles.

Consider a customer of a cloud service provider with a collection of VMs. Their

goal is to extract the maximal number of cycles possible for executing their compu-

tational requirements. Note that the goal of the customer isnot to inflict the highest

load on the cloud but to extract the maximum amount of useful work for them-

selves. To this end they wish to steal as many cycles as possible. As has already

been explained attacking induces an overhead and having multiple VMs in attack

mode on the same physical host leads to higher total overheadreducing the total

amount of useful work. Ideally, therefore, the customer would like to have exactly

one VM in attack mode per physical host with the other VMs functioning normally

in non-attack mode.

Unfortunately, cloud providers such as Amazon’s EC2 not onlycontrol the

mapping of VMs to physical hosts but also withhold information about the map-

ping from their customers. As infrastructure providers this is the right thing for

them to do. By doing so they make it harder for malicious customers to snoop on

others. [109] show the possibility of targeting victim VMs by mapping the internal

cloud infrastructure though this is much harder to implement successfully in the

wild [125]. Interestingly, though our attack can be turned on its head not just to

steal cycles but also to identify co-placement. Assume without loss of generality

for the purposes of the rest of this discussion that hosts aresingle core machines.

Recall that a regular (i.e. non-attacking) VM on a single hostis capped at 38%

whereas an attacking VM obtains 87% of the cycles. Now, if we have two attack-

ing VMs on the same host then they obtain about 42% each. Thus by exclusively

(i.e without running any other VMs) running a pair of VMs in attack mode one can

determine whether they are on the same physical host or not (depending on whether

they get 42% or 87%). Thus a customer could potentially run every pair of VMs

and determine which VMs are on the same physical host. (Of course, this is under

the not-unreasonable assumption that only the VMs of this particular customer can

be in attack mode.) Note that if there aren VMs then this scheme requires
(

n

2

)

tests

34 CHAPTER 2. SECURECLOUD

for each pair. This leads to a natural question: what is the most efficient way to

discover the mapping of VMs to physical host? This problem has a very clean and

beautiful formulation.

Observe that the VMs get partitioned among (an unknown number of) the phys-

ical hosts. And we have the flexibility to activate some subset of the VMs in attack

mode. We assume (as is the case of Amazon’s EC2) that there is noadvantage to

running any of the other VMs in normal (non-attack) mode since they get their fair

share (recall that in EC2 attackers only get additionalsparecycles). When we acti-

vate a subset of the VMs in attack mode then we get back one bit of information for

each VM in the subset - namely, whether that VM is the only VM from the subset

on its physical host or whether there are 2 or more VMs from thesubset on the

same host. Thus the question now becomes: what is the fastestway to discover the

unknown partition (of VMs among physical hosts)? We think ofeach subset that

we activate as a query that takes unit time and we wish to use the fewest number of

queries. More formally:

Partition. You are given an unknown partitionP = {S1, S2, . . . , Sk} of a

ground set[1 . . . n]. You are allowed to ask queries of this partition. Each queryis

a subsetQ = {q1, q2, . . . , } ⊂ [1 . . . n]. When you ask the queryQ you get back

|Q| bits, a bitbi for each elementqi ∈ Q; let Sqi denote the set of the partitionP

containingqi; thenbi = 1 if |Q⋂

Sqi | = 1 (and otherwise,bi = 0 if |Q⋂

Sqi | ≥ 2).

The goal is to determine the query complexity of Partition, i.e., you have to findP

using the fewest queries.

Recall that a partition is a collection of disjoint subsets whose union is the

ground set, i.e.,∀1 ≤ i, j,≤ k, Si ∩ Sj = ∅ and
⋃k

i=1 Si = [1 . . . n]. Observe that

one can define both adaptive (where future queries are dependent on past answers)

and oblivious variants of Partition. Obviously, adaptive queries have at least as

much power as oblivious queries. In the general case we are able to show nearly

tight bounds:

Theorem 1. The oblivious query complexity ofPartition isO(n
3

2 (log n)
1

4) and the

adaptive query complexity ofPartition is Ω(n

log2 n
).

2.9. COORDINATED CLOUD ATTACKS 35

Proof Sketch: The upper bound involves the use of the probabilistic methodin

conjunction with sieving [18]. We are able to derandomize the upper bound to pro-

duce deterministic queries, employing expander graphs andpessimal estimators.

The lower bound uses an adversarial argument based on the probabilistic method

as well.

In practice, partitions cannot be arbitrary as there is a bound on the number

of VMs that a cloud service provider will map to a single host.This leads to the

problem B-Partition where all the sets in the partition havea size at mostB. In the

special case we are able to prove tight bounds:

Theorem 2. The query complexity ofB-Partition is θ(log n).

Proof Sketch: The lower bound follows directly from the information-theoretic

argument that there areΩ(2n logn) partitions while each query returns onlyn bits of

information. The upper bound involves use of the probabilistic method (though the

argument is simpler than for the general case) and can be derandomized to provide

deterministic constructions of the queries.

Proof Sketch: We prove an upper bound ofO(log n) on the query complexity

of B-Partition, where the size of any set in the partition is at mostB. Due to

constraints of space we exhibit a randomized construction and leave the details of

a deterministic construction to [141]. First, we query the entire ground set[1 . . . n]

and this allows us to identify any singleton sets in the partition. So now we assume

that every set in our partitions has size at least 2. Consider apair of elementsx and

y belonging to different setsSx andSy. Fix any other elementy′ ∈ Sy, arbitrarily

(note that such ay′ exists because we assume there are no singleton sets left). A

queryQ is said to be aseparating witnessfor the tupleT =< x, y, y′, Sx > iff

Q
⋂

Sx = x andy, y′ ∈ Q. (Observe that for any such query it will be the case

that bx = 1 while by = 0, hence the term “separating witness”. Observe that any

partitionP is completely determined by a set of queries with separatingwitnesses

for all the tuples the partition contains. Now, form a queryQ by picking each

element independently and uniformly with probability1
2
. Consider any particular

36 CHAPTER 2. SECURECLOUD

tupleT =< x, y, y′, Sx >. Then

PrQ(Q is a separating witness forT) ≥ 1

2B+2

Recall that|Sx| ≤ B since we are only considering partitions whose set sizes areat

mostB. Now consider a collectionQ of such queries each chosen independently

of the other. Then for a given tupleT we have that

PrQ(∀Q∈QQ is not a separating witness forT) ≤ (1− 1

2B+2
)|Q|

But there are at most
(

n

B+2

)

∗B3 ≤ nB+2 such tuples. Hence,

PrQ(∃tupleT
∀Q∈QQ is not a separating witness forT) ≤

nB+2 ∗ (1− 1

2B+2
)|Q|

Thus by choosing|Q| = O((B + 2) ∗ 2B+2 ∗ log n) = O(log n) queries we can

ensure that the above probability is below 1, which means that the collectionQ
contains a separating witness for every possible tuple. This shows that the query

complexity isO(log n).

2.10 Conclusion

Scheduling has a significant impact on the fair sharing of processing resources

among virtual machines and on enforcing any applicable usage caps per virtual

machine. This is specially important in commercial services like computing cloud

services, where customers who pay for the same grade of service expect to receive

the same access to resources and providers offer pricing models. However, the Xen

hypervisor (and perhaps others) uses a scheduling mechanism which may fail to

detect and account for CPU usage by poorly-behaved virtual machines, allowing

malicious customers to obtain enhanced service at the expense of others.

We have demonstrated this vulnerability in the lab and on Amazon’s Elastic

Compute Cloud (EC2). Under laboratory conditions, we found that the applications

exploiting this vulnerability are able to utilize up to 98% of a CPU core, regardless

2.10. CONCLUSION 37

of competition from other virtual machines. Amazon EC2 uses apatched version

of Xen, which prevents the capped amount of CPU resources of other VMs from

being stolen. However, our attack scheme can steal idle CPU cycles to increase

its share, and obtain up to 85% of CPU resources (as mentioned earlier, we have

been in discussions with Amazon about the vulnerability reported in this chapter

and our recommendations for fixes; they have since implemented a fix that we have

tested and verified). We describe four approaches to eliminating this vulnerability,

and demonstrate their effectiveness and negligible overhead. Finally, we give an

algorithm in conjunction with our attack to discover the co-placement of VMs, this

important mechanism can be utilized to conduct coordinatedattacks in Cloud.

[1] Amazon Elastic Compute Cloud.http://aws.amazon.com/ec2/.

[2] AMD Virtualization Technology.http://www.amd.com/.

[3] Facebook places.http://www.facebook.com/facebookplaces.

[4] Foursquare.https://foursquare.com/.

[5] Gowalla.http://gowalla.com/.

[6] Microsoft Azure Services Platform. http://www.microsoft.com/

azure/default.mspx.

[7] Microsoft Windows Azure Platform. http://www.microsoft.com/

azure/default.mspx.

[8] Strangers helping strangers. http://www.facebook.com/

SHStrangers.

[9] Yelp. http://www.yelp.com/.

[10] Method and system for protecting websites from public internet threats.

United States Patent 7,260,639, August 2007.

[11] Amazon Web Services: Overview of Security Processes, 2008. http://

developer.amazonwebservices.com.

[12] Method and system for providing on-demand content delivery for an origin

server. United States Patent 7,376,736, May 2008.

Reference

