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Abstract

The optimality conditions for linear programming problems with fuzzy coefficients are derived in this paper. Two solution
concepts are proposed by considering the orderings on the set of all fuzzy numbers. The solution concepts proposed in this paper
will follow from the similar solution concept, called the nondominated solution, in the multiobjective programming problem. Under
these settings, the optimality conditions will be naturally elicited.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The occurrence of fuzziness in the real world is inevitable owing to some unexpected situations. Therefore,
imposing fuzziness upon conventional optimization problems becomes an interesting research topic. The collection of
papers on fuzzy optimization edited by Stowiriski [1] and Delgado et al. [2] gives the main stream of this topic. Lai and
Hwang [3,4] also give an insightful survey. On the other hand, the book edited by Stowiriski and Teghem [5] provides
comparisons between fuzzy optimization and stochastic optimization for multiobjective programming problems.

Bellman and Zadeh [6] inspired the development of fuzzy optimization by providing the aggregation operators,
which combined the fuzzy goals and fuzzy decision space. After this motivation and inspiration, there appeared a
lot of articles dealing with fuzzy optimization problems. Some interesting articles are Buckley [7,8], Julien [9] and
Luhandjula et al. [10] using possibility distribution, Herrera et al. [11] and Zimmermann [12,13] using fuzzified
constraints and objective functions, Inuiguchi et al. [14,15] using modality measures, Tanaka and Asai [16] using
fuzzy parameters, and Lee and Li [17-19] considering the de Novo programming problem.

The duality of the fuzzy linear programming problem was firstly studied by Rodder and Zimmermann [20]
considering the economic interpretation of the dual variables. After that, many interesting results regarding the duality
of the fuzzy linear programming problem was investigated by Bector et al. [21-23], Liu et al. [24], Ramik [25],
Verdegay [26] and Wu [27]. In this paper, we investigate the optimality conditions for linear programming problems
with fuzzy coefficients.
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In Section 2, we introduce some basic properties and arithmetics of fuzzy numbers. In Section 3, we formulate
two linear programming problems with fuzzy coefficients. One considers crisp (conventional) linear constraints, and
the other considers fuzzy linear constraints. Two solution concepts are proposed for these two problems. In Section 4,
we derive the optimality conditions for these two problems by introducing the multipliers. Finally, in Section 5, three
examples are provided to illustrate the discussions in linear programming problems with fuzzy coefficients.

2. Arithmetics of fuzzy numbers

Let R be the set of all real numbers. The fuzzy subset a of R is defined by a function &; : R — [0, 1], which is called
a membership function. The a-level set of a, denoted by ay, is defined by a, = {x € R: &;(x) > o} forall @ € (0, 1].
The 0-level set ag is defined as the closure of the set {x € R : §;(x) > 0},1i.e.,a0 =cl ({x € R: & (x) > 0}).

Definition 2.1. We denote by F(R) the set of all fuzzy subsets a of R with membership function &; satisfying the
following conditions:

(i) a is normal, i.e., there exists an x € R such that &;(x) = 1;

(ii) &; is quasi-concave, i.e., &;(Ax + (1 — A)y) > min{&;(x), &;(y)} forall x, y € Rand A € [0, 1];
(iii) &; is upper semicontinuous, i.e., {x € R : &§;(x) > a} = a, is a closed subset of U for each o € (0, 1];
(iv) the O-level set ag is a compact subset of R.

The member a in F(R) is called a fuzzy number.

Suppose now that a € F(R). From Zadeh [28], the «-level set a, of a is a convex subset of R for each « € [0, 1]
from condition (ii). Combining this fact with conditions (iii) and (iv), the a-level set d, of a is a compact and convex
subset of R for each o € [0, 1], i.e., dy is a closed interval in R for each o € [0, 1]. Therefore, we also write

do = [ak,al).

Definition 2.2. Let a be a fuzzy number. We say that a is nonnegative if aL > 0 for all & € [0, 1]. We say that a is
positive if Zzé > 0 forall « € [0, 1]. We say that a is nonpositive if &g < Oforall @ € [0, 1]. We say that a is negative
ifa’ <0foralla € [0, 1].

Remark 2.1. Let @ be a fuzzy number. Then a5 < a¥ for all a € [0, 1]. Therefore if @ is nonnegative then a% > 0
and dg > 0 for all @ € [0, 1], and if a is positive then sz; > (0 and &g > 0 for all @ € [0, 1]. We can have similar
consequences for nonpositive and negative fuzzy numbers.

Let “©®” be any binary operations @ or ® between two fuzzy numbers a and b. The membership function of a © b
is defined by

§405(2) = sup min{&;(x), §5(v)}

Xoy=z

using the extension principle in Zadeh [29], where the operations © = @ and ® correspond to the operations o = +
and X, respectively. Then we have the following results.

Proposition 2.1. Let a, beF (R). Then we have
(i) @ ®b € F(R) and
@ ®b)y = [Zzé +BE,av +l§§[];
(i) @ ® b € F(R) and
@ ®b)o = [min {albl, alby, albt.alby | max|albl. akby albk.alpy }].

The following proposition is very useful for discussing the optimality conditions.

Proposition 2.2. Let a be a nonnegative fuzzy number and b be a nonpositive fuzzy number. If @ @ b = 0, then
abbl = akbl =aybk = alby =0 foralla €10, 11.
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Proof. From Proposition 2.1 (ii), we immediately have that @ ® b = 0 implies

GUBL = 0 = abiy ()

for all & € [0, 1]. Therefore, we need to show that GLbL = aVbY = 0 for all « € [0, 1]. We consider the following
cases.

(i) Suppose that b¥ # 0. Then bL # 0 since bL < bY. Therefore ,Efof al =0by (1), ie., akbl =alsl =o.
(ii) Suppose that bU = 0 and b = 0. Then it is easy to see that aLbL = aVbl = 0.

(iii) Suppose that bU =0 and bL # 0. Then it remalns to show aLbL = 0. Since bL # 0 and aUhL = 0 by (1), we

have a a = 0. Since a is nonnegative, 0 < aL < a = 0 shows aLbL = 0. We complete the proof. W

We say that a is a crisp number with value m if its membership function is given by

ifr=m
0 otherwise.

&a(r) = {

We also use the notation 1y, to represent the crisp number with value . It is easy to see that (1)L = (1, =
for all @ € [0, 1]. Let us remark that a real number m can be regarded as a crisp number 1.

3. Solution concept

Let A = [a%,aY] and B = [b%, bV] be two closed intervals in R. We write B < A if and only if bt < g’ and
pY <aV,and B < A ifand only if the following conditions are satisfied:

bl <at bt <at bl < at
or or .
bUgaU Y <a¥ pY <a¥
Let @ and b be two fuzzy numbers. Then a, = [Zzo’;, Zzg ] and b, = [bé, bg ] are two closed intervals in R for all
a € [0, 1]. We write b < a if and only if by < dq for all @ € [0, 11, or equivalently, bL < aL and bY < a¥ for all
a € [0, 1]. It is easy to see that “<” is a partial ordering on F(R).
For notational convenience, we denote by 0 the crisp number 1{0 with value 0. Now we consider the following two
linear programming problems with fuzzy coefficients:

(FLPI) min @G ®1,)® @ (@ Q1)

subjectto ajix; +---+ajux, +bj <O0forj=1,...,m
X1y Xy >0
and
(FLP2) min @ Q1)@ & G ® 1)
subjectto (@1 ® 1y) ® - ® (@jn ® 1y,) ®b; <0for j=1,....m
Xly.os Xy >0
where 1y, is a crisp number with value x; for i = 1,...,n. Problem (FLP1) considers the crisp (conventional)

constraints, and problem (FLP2) considers fuzzy constraints. For convenient presentation, we also write
fO=E@®1L)® & @®l)
gj(X) =ajixi+ -+ ajuxn +b;
g =@j1R1)® - ®®@jn®ly,) ®b;.
We need to interpret the meaning of minimization in problems (FLP1) and (FLP2). Since “<” is a partial ordering,

not a total ordering, on F(R), we may follow the similar solution concept (the nondominated solution) used in
multiobjective programming problem to interpret the meaning of minimization in problems (FLP1) and (FLP2).
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Two types of nondominated solution will be~considered. We write a < b if and only if ay, < l;a forall € [0, 1]
and there exists an o™ € [0, 1] such that g,+ < by, i.e.,

{&5* < bé* [&5* < bg* {&5* < bg*
or or

al. < bl al. < bl al, < by

2)

Therefore, we see that @ <; b means @ < b and @ #* b. On the other hand, we write @ <y b if and only if @y < by for
all @ € [0, 1], i.e., (2) is satisfied for each @ € [0, 1].

Definition 3.1. Let x* be a feasible solution of problem (FLP1). We say that x* is a nondominated type-I solution
(resp. ngndominqted type-I1 solution) of problem (FLP1) if there exists no feasible solution X such that f(X) <; f(x*)
(resp. f(X) <y f(x*)). The nondominated type-I and type-II solutions can be similarly considered for problem
(FLP2).

In what follows, we are going to provide the optimality conditions for nondominated solution of problems (FLP1)
and (FLP2).
4. The optimality conditions

In order to derive the optimality conditions of problems (FLP1) and (FLP2), we need to recall the
Karush—Kuhn-Tucker conditions for nonlinear programming problem. Let f and g;, j = 1, ..., m, be real-valued
functions defined on R”. Then we consider the following (conventional) nonlinear programming problem:

(NLP) min f(x):f(-x13""-xn)
subjectto g;(x) <0,j=1,...,m.

Suppose that the constraint functions g; are convex on R" for each j = 1,...,m. Then the well-known
Karush—Kuhn—Tucker optimality conditions for problem (NLP) (e.g., see Horst et al. [30] or Bazarra et al. [31])
is stated below.

Theorem 4.1. Assume that the constraint functions g; : R" — R are convex on R" for j = 1,...,m. Let
X ={xeR:gix) <0,i =1,...,m} be a feasible set and a point X* € X. Suppose that the objective
function f : R" — R is convex at x*, and f, gj, j = 1, ..., m, are continuously differentiable at x*. If there exist

(Lagrange) multipliers 0 < u; € R, j =1, ..., m, such that

() VI + 2000, 1 Ve (x) =0;
(i) njgj(x*) =0forall j=1,...,m,
then X* is an optimal solution of problem (NLP).

Now, we are in a position to derive the optimality conditions for problems (FLP1) and (FLP2).
4.1. Crisp (conventional) constraints

Now we consider the problem (FLP1) with crisp constraints. We adopt the following notations:

~L ~U

Cla Cla aji
cé: s cf{: |, and a;=| @ [,

...L ~

Cha Crl{oz djn
where ¢t = (¢)L and¢¥ = (@)Y fori = 1,...,n. We also see that ¢&, < &Y foralle € [0, I]and alli = 1,...,m.
We also denote by ey the unit vector in R” fork = 1, ..., n, i.e., the kth component of e is 1 and the other components
of ey are zero.
Theorem 4.2. Let x* = (x{,...,x;) be a feasible solution of problem (FLP1). If there exist positive real-valued
functions MY and MY defined on [0, 1], and nonnegative real-valued functions 1 jand A for j = 1,...,m and

k=1,...,n defined on [0, 1] such that the following conditions are satisfied:
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Q) AE@) ek + 2V (@) - Y + Y mj(e)-aj =3 Ak(@) e = 0foralla € [0, 1];

() pj(@) - gix*) = 0 = (o) ~x,’: forall o € [0,1], all j = 1,...,m and all k = 1,...,n, where
gj(X*) =ajixi +---+ajx; +bj,

then xX* is a nondominated type-I solution of problem (FLP1).

Proof. We are going to prove this result by contradiction. Suppose that conditions (i) and (ii) are satisfied and x* is
not a nondominated type-I solution. Then there exists a feasible solution x such that f(x) <; f(x*), i.e., from (2),

Jr® < [ e ® = far 6D [ ®) < far ) 3
fe® < fhx for® < fr(x) f® < [ (x)
for some o* € [0, 1]. Since x; > Ofori = 1,...,n and EiLa < El% foralla € [0,1]and all i = 1,...,n, using
Proposition 2.1, we have
faL(x) = E]La “X At +E,fa X, and faU(x) = Efa cX] A —1—5,(1/“ - Xp. (C))
We also have that
Vie@=c¢; and V' x)=cf. 5)
We now define a real-valued function
%) = (AL(a*) k42U @) - Eﬁx*) Xi At (/\L(a*) ek 4+ AV (@) -5,5{,*)  Xn. 6)
Then we see that
f® =15 - fh + Y @) - fL. @)
Combining (3) and (7), we see that
f® < f&x*) ®)
since AL (¢*) > 0 and AY («*) > 0. Furthermore, from (5) and (7), we have
Vi) =) - VL) + A @) - VAL(x) = Al (@) - ek + 1Y (@) - L. 9)

We consider the following constrained optimization problem:

(P1) min fx)

subjectto  g;(x) =aj1x1+---+ajpux, +b; <0,j=1,...,m,
gm+k(x) = —Xk Sovkz ]3"'5’19
where f is defined in (7). Then problems (P1) and (FLP1) have identical feasible regions. Since conditions (i) and (ii)
of this theorem are satisfied for all @ € [0, 1], and a; = Vg;(x) forall j = 1,...,m, according to (9) and for any
fixed a* € [0, 1], we can obtain the following two new conditions by letting Wjox = Wj (@) =0forj=1,...,m,
gm+k (X) = —xp and Aggr = Ag(a®) fork =1,...,n:

() VFE) + X e - V() + Yy ke - Vemar ) = A @) - ek + AV (@) - Y + Y1 wja) -
aj — Yy M) e = 0;
(i) Wiar - 8j(X*) =0 = A+ - gmpk(X*) forall j=1,..., mandallk =1,...,n.

Using Theorem 4.1, we see that the above conditions (i’) and (ii’) are the KKT conditions for problem (P1). Therefore,
we conclude that x* is an optimal solution of problem (P1), i.e., f(x*) < f(X), which contradicts (8). This completes
the proof. W

Remark 4.1. The positive real-valued functions AL and AU, and nonnegative real-valued functions s j and A for
j=1,...,mand k = 1,...,n can be constructed as follows. For any fixed o« € [0, 1], if there exist positive real
numbers Xé and kg , and nonnegative real numbers Ayy and pj, for j = 1,...,m and k = 1, ..., n such that the
following conditions are satisfied:
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@ Af el +2Y el + 20 e a; = Y e ek = 0;
(b) pjo-gi(x*) =0=2gy-x;forall j=1,...,mandk =1,...,n,

then we can define the positive real-valued functions AM(a) = Ag and AY (@) = Ag for all « € [0, 1], and the
nonnegative real-valued functions p (@) = pjy and Ag(a) = Age forall o € [0,1], all j = 1,...,m and all
k =1, ..., n. Therefore, if the above conditions (a) and (b) are satisfied for all @ € [0, 1], then x* is a nondominated
type-I solution of problem (FLP1) by Theorem 4.2.

Theorem 4.3. Let x* = (x{, ..., x;) be a feasible solution of problem (FLP1). If there exist positive real numbers
AL and \Y, nonnegative real numbers jj and Ay for j =1,... . mandk =1, ...,n, and o € [0, 1] such that the
following conditions are satisfied:

@) AF el +aY el +30 pyay = Y e =0
() pj-gix)=0=xr-x{forallj=1,....mandallk =1, ...,n,
then X* is a nondominated type-II solution of problem (FLP1).

Proof. We are going to prove this result by contradiction. Suppose that conditions (i) and (ii) are satisfied and x* is not
a nondominated type-II solution. Then there exists a feasible solution X such that f(X) <y f(x*), i.e., (3) is satisfied
for all @ € [0, 1]. For @™ in conditions (i) and (ii), we can define a real-valued function

f =0k +aV oy x4+l etk AV G x (10)
Then we see that

f@ =1 fh+a? flx (11)
and

Vix) =2 VL&) +1Y - VL) =ak el +2Y - L. (12)

Now we consider the constrained optimization problem (P1) as in the proof of Theorem 4.2. Then we can obtain the
following two new conditions:

(i/) Vf(x*)+ Z;'r;] nj-Vg; x*)+ ZZ:l M-V gk (X*) = AL ~C£* +aV ‘Cg* +Z’;l:1 Mmj-aj— ZZ=1 Ak e =0;
(ii/) wj-gi(x)=0=2x - gnp(x*forall j=1,...,mandallk =1,...,n.
The remaining proof follows from the similar arguments of Theorem 4.2. W

We are going to present another type of optimality conditions for a nondominated type-II solution without
considering a*.

Definition 4.1. Let a be a fuzzy number. We say that a is a canonical fuzzy number if the functions 1 () = &OLt and

ma) = Ezg are continuous on [0,1].

Remark 4.2. Let a be a fuzzy number and its membership function be strictly increasing on the interval [Zzé, ZJIL]
and strictly decreasing on the interval [V, @} ]. Then, from the fact of strict monotonicity, % and a¥ are continuous
functions with respect to the variable & on [0,1]. This shows that a is a canonical fuzzy number.

Let f : [a,b] — R" be a vector-valued function defined on the closed interval such that each component f;,
i =1,...,n,is continuous on [a, b]. Then the Riemann integral of f on [a, b] is defined to be the Riemann integral
of each component f; on [a, b]. More precisely, we have

b b b
f f(x)dx = |:/ f1(x)dx, ,/ fn(x)dx] .

Now we are in a position to present another type of optimality conditions by considering the Riemann integral.
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Theorem 4.4. Suppose that the fuzzy coefficients ¢; fori = 1, ..., n in the fuzzy-valued objective function f are now
assumed to be canonical fuzzy numbers. Let X* = (x{, ..., x;) be a feasible solution of problem (FLP1). If there exist
positive real numbers M* and AV, and nonnegative real numbers wjand A for j=1,... ., mandk =1,...,n such

that the following conditions are satisfied:

. 1 1
@) AL [y ehda+ 2V - [y el da+ Y0 A = Yop_ e = 0;
(i) pj-g;j(x") =0= %A -x,fforallj =1,....mandallk =1, ..., n,
then x* is a nondominated type-II solution of problem (FLP1).

Proof. For any fixed x, since fof‘ (x) and faU (x) are continuous on [0,1] with respect to the variable « by definition,
they will be Riemann integrable on [0,1] with respect to «. Therefore, we can define a real-valued function as follows:

1 1
fx)=aL. / FExyda 4+ 2Y - / ¥ x)da. (13)
0 0

For any fixed «, since fO{‘ (x) and faU (x) are linear functions, that is, they are continuously differentiable, by Rudin [32,
Theorem 9.42], we have

1

1 1 1
Vf(x):AL~/ VfaL(x)da+kU~/ vfaU(x)dazxL./ c§da+/\U-/ Uda. (14)
0 0 0

0

It also says that condition (i) of this theorem is well defined. We are going to prove this result by contradiction. Suppose
that x* is not a nondominated type-II solution. Then there exists a feasible solution X such that f(x) <y f(x*),i.e., (3)
is satisfied for all @ € [0, 1]. Therefore, we have

Mo fa @AY T ® <At fr e AV f o
for all o € [0, 1] since AX > 0 and AV > 0. By taking integration with respect to  on [0,1] and using (13), we obtain

f(X) < f(x*). Now we consider the constrained optimization problem (P1) as in the proof of Theorem 4.2. Applying
(14) to conditions (i) and (ii) of this theorem, we obtain the following two new conditions:

() VA& + X0y iy V8 () 4+ Xy Ak Vgmek(x7) = 0;
(ii/) wi-8&xN)=0=2xrguei(x*) forall j=1,...,mandallk =1,...,n.

The remaining proof follows from the similar arguments of Theorem 4.2. MW

Remark 4.3. From the proof of Theorem 4.4, we see that if the function f in (13) is defined as

1 1
fx = / fEx)da + / £V (x)da,
0 0

then Theorem 4.4 still holds true if condition (i) is replaced by the following new condition:

1 1 m n
/ cﬁda+/ c3da+2u,~~a,~—2kk~ek:0.
0 0 =1 k=1

J

Now we are going to present the optimality conditions of problem (FLP1) in the fuzzy-valued form. We write
0= ((), el (3)T. Let x be an n-vector in R”. Then the crisp vector i{x} is defined as i{x} = (I{Xl}, i{n}’ e, I{xn}).

Leta = (ay, ..., ay) be an n-vector in R”. We say that a has the same sign if and only if ¢; > Oforalli =1,...,n
simultaneously, or a; < O for alli = 1, ..., n simultaneously (i.e., the components of vector a have the same sign).
Or, equivalently, a has the same sign if and only ifa > Q ora < 0.

Theorem 4.5. Let x* be a feasible solution of problem (FLP1). Let ¢ = (¢1, ..., ¢,)T. We assume that each vector
a; = Vg;(x) has the same sign for j = 1, ..., m. If there exist nonnegative fuzzy numbers [ij, \x € F(R) for
j=1,...,mand k =1, ..., n such that the following conditions are satisfied:

o [@ (10| e [@i (ke liaw)]=0
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(i) fij ® Tgyoey =0 =M @ Ty forall j=1,....,mandk =1,....n,
then x* is a nondominated type-1 solution of problem (FLP1).

Proof. We assume that conditions (i) and (ii) are satisfied. Let I, € {1,...,m} and I_ C {1, ..., m} be the index
sets defined by

Iy ={j:a; >0} and I_={j:a; <0}
Since
- ~ ~ - T
laj) = (l{a,-l}» Hajaps -+ l{ajn}) :
the ith component of the formula in condition (i) is given by
m - n - - -
G ® [@ (ﬂj ® 1{‘1ji}):| ® [@ (kk ® 1{—51”-})} =0, (15)
=1 k=1

where 8y; = 1if i = k and é;; = 0if i # k. Since fi; and Xk are nonnegative fuzzy numbers forall j = 1,...,m
andall k = 1,..., n, we have that (ii;)L = ,uja, ([L])U ,u/a, k= AL and ()Y = )»ij are nonnegatlve real
numbers by Remark 21 forall € [0,1],all j = 1,...,mand all k = 1 , n. Taking the a-level set of (15) by
using Proposition 2.1, we have

n
Gt D M- aji+ ) Ay - aji Zkka B = 0=+ ) M- ajit ) Ay i = ) K-
k=1

Jjely Jjel- jely jel-
forallo € [0, 1]and alli = 1, ..., n. Equivalently, in vector form, we have
n
coLt+le]L'a'aj+le§ja' Z)‘ka ek—o_c +Z/’Lja aj+Z/’LJa' lefa'ek
N m Jjel- Jely Jjel- k=1
for all @ € [0, 1], which also implies, by adding them together,
m n
c§+cg+z,uja~aj—21\ka-ek=0 (16)
j=1 k=1

for all o« € [0, 1], where o = /1]4“ + /lya and Ay = i,fa + i,lcja are nonnegative real numbers for all « € [0, 1],
all j =1,...,mandall k = 1, ..., n. We are going to prove this theorem by contradiction. Suppose that x* is not a
nondominated type-I solution. Then there exists a feasible solution X such that f X) <; f (x*), i.e., (3) is satisfied for
some o™ € [0, 1]. We now define a real-valued function f as in (6) or in (7). Since g;(x*) < Oforall j =1,...,m
and x; >0forallk =1, ..., n, taking the a-level set of condition (ii) by using Proposition 2.1, we obtain that

~U * ~ 1 L ~ 1 v ~L *

o - 8j(X7) = (Mj ® 1{g_;<x*>})a =0= (Mj ® 1{g-f("*)}>a = Wje * 8j(X7)

forallo € [0, 1] and all j =1,...,m and

L= (@l =0= (oim) =il .
ka * Xk k b)), k b)), jo o Xk

forall @ € [0, 1] and all k = 1, ..., n, which imply, by adding them together,

0= [, - gj(X") + iy - 85 (") = tja - 8(x*) (17
forallo € [0, 1]and all j = 1,...,m and

0=hpy X +Ap, - Xf = Ao - Xt (18)
forall € [0, 1]and all k = 1, ..., n. Now we consider the constrained optimization problem (P1) as in the proof of

Theorem 4.2. According to Egs. (16)—(18) and (9), we obtain the following two new conditions:
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(i) Vx5 + Dt Bjar - Vg (X*) 4+ D5y hkar - Vgm4k (X*) = 0 (note that (16) is satisfied for all & € [0, 11);

(ii/) Wit - 8 (X*) =0 = Agr - gmypk(x*) forall j = 1,...,mand allk = 1, ..., n (note that (17) and (18) are
satisfied for all « € [0, 1]).

Using Theorem 4.1, we see that x* is an optimal solution of problem (P1) by regarding conditions (i’) and (ii’) as the
KKT conditions, i.e., f(x*) < f(x), which contradicts (8). This completes the proof. H

4.2. Fuzzy constraints

Now we are going to derive the optimality conditions for problem (FLP2) with fuzzy constraints. We recall that
the fuzzy constraints are presented as

G0 =@@101)® @ @@n® 1) ®b,
for j =1, ..., m. Using Proposition 2.1, we obtain
2 = @PE@ =akh, xi 4 +ak,  xn+b%,
2 = @)Y M) = a1, x4+ Ay X+ DY,
for o € [0, 1], where
bly = (b))g. by = (bj)g . s = @ji)g and  aji, = @ji)g -

We also write

~L ~U

ajlot ajlol
L _ . U _ .
aj,=| and a;, =|
~L ~U

ajna ajnot

Then ajLa =V g}a (x) and aya = Vg%t (x). Now we are in a position to derive the optimality conditions of problem
(FLP2).

Theorem 4.6. Let x* be a feasible solution of problem (FLP2).
(A) If there exist positive real-valued functions A\* and MY defined on [0,1], and nonnegative real-valued functions
wijand A for j=1,...,mandk =1, ..., ndefined on [0,1] such that the following conditions are satisfied:

() A@) el + 1@ el + X0 mj@) -a]L.a 37 (@) e =0 foralla € [0, 1];
(i) pj(e) ~§jlfa(x*) =0= () -x} foralla €[0,1), all j=1,... . mandallk =1, ...,n,

then x* is a nondominated type-I solution of problem (FLP2).
(B) If there exist positive real-valued functions A- and AV defined on [0,1], and nonnegative real-valued functions j
and A for j=1,... . mandk =1, ..., n defined on [0,1] such that the following conditions are satisfied:

(i) AE(@) et + A1V (@) Y + (@) -af/a =30 (@) e =0 forall a € [0, 1];
iv) pj(a) - gﬁfa(x*) =0=M(a)-x{ foralla €[0,1), all j=1,... . mandallk =1,...,n,
then x* is a nondominated type-I solution of problem (FLP2).

Proof. (A) We are going to prove this result by contradiction. Suppose that conditions (i) and (ii) are satisfied and
x* is not a nondominated type-I solution. Then there exists a feasible solution X such that f x) <g f (x*), i.e., (3) is
satisfied for some a* € [0, 1]. We now define a real-valued function f as in (6) or in (7) and consider the following
constrained optimization problem:

P2) min fx)
subject to gfa*(x) <0,j=1,...,m

gr(x)=—x, <0,k=1,...,n.
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We see that g;(x*) < 0 implies gfa(x*) < 0 and g%(x*) < O for all « € [0, 1]. This shows that if x* is
a feasible solution of problem (FLP2), then x* is also a feasible solution of problem (P2). From (9) and letting
Wjgr = @) = 0for j = 1,...,m and Ao+ = Ag(a®) for k = 1,...,n, we obtain the following two new
conditions from conditions (i) and (ii):
() VIO A0 jar - Ve () + 300 Mear - Ver ) = A (@) b 42V (@) el + 371, pj @) -ak,. —
Y it Marex = 0;
(i) W jar -g;a*(x*) =0= Ao+ - gx(x) forall j=1,..., mandallk =1,...,n.
Using Theorem 4.1, we see that x* is an optimal solution of problem (P2) by regarding the above conditions (i) and
(ii’) as the KKT conditions, i.e., f(x*) < f(X), which contradicts (8).
(B) We now consider the following constrained optimization problem:
(P2) min f(x)
subject to g%*(x) <0,j=1,...,m
gr(xX) = —x, <0, k=1,...,n.
Then we see that if x* is a feasible solution of problem (FLP2), then x* is also a feasible solution of problem (P2").
The above similar arguments can also be used. This completes the proof. W

Theorem 4.7. Let X* be a feasible solution of problem (FLP2).

(A) If there exist positive real numbers M- and )Y, nonnegative real numbers jand A for j = 1,...,m and
k=1,...,n,and a* € [0, 1] such that the following conditions are satisfied.:

() AF el +aY el + 30y ak . = Y e =0;

(i) pj ~§fa*(x*) =0=xc-xjforallj=1,.... mandallk =1, ...,n,

then X* is a nondominated type-II solution of problem (FLP2).

(B) If there exist positive real numbers A\* and AV, nonnegative real numbers wj and A for j = 1,...,m and
k=1,...,n, and a* € [0, 1] such that the following conditions are satisfied.:

(i) A% el + AV el + 300wy Al = Yo e = 0;

(iv) p;j ~§§Ja*(x*) =0=M-x{forallj=1,....mandallk =1,...,n,

then X* is a nondominated type-II solution of problem (FLP2).

Proof. (A) We are going to prove this result by contradiction. Suppose that conditions (i) and (ii) are satisfied and
x* is not a nondominated type-II solution. Then there exists a feasible solution X such that f X) <p f (x*),i.e., (3)is
satisfied for all « € [0, 1]. For o* in conditions (i) and (ii), we now define a real-valued function f as in (10) or in
(11). Then we have V f(x) = AL - cg* +A2V. cg* from (12). Now we consider the constrained optimization problem
(P2) as in the proof of Theorem 4.6. Then we can obtain the following two new conditions:

() V) 4+ 1 VEE e )+ 0y M- Var(x*) = Al b 42V el + 30 i -ak =300 di-e = 0;
(i) M ~§fa*(x*) =0= ¢ -gx(x*)forall j=1,...,mandallk =1,...,n.
The remaining proof follows from the similar arguments of Theorem 4.6.

(B) The above similar arguments can be used by considering problem (P2'). H

Theorem 4.8. Suppose that the fuzzy coefficients ¢; in the fuzzy-valued objective function f and @ ji in the fuzzy-

valued constraint functions g fori = 1,...,nand j =1, ..., m are now assumed to be canonical fuzzy numbers.
Let X* be a feasible solution of problem (FLP2).

(A) If there exist positive real numbers \* and AV, and nonnegative real numbers wjand A for j =1,...,m and
k=1, ..., n such that the following conditions are satisfied:

. 1 1 1

() A5 - fo egda+aY - foelda+ 3wy fy aj.‘adoe =3 ke =0
(i) pj fol g'fa(x*)dot =0=x-xjforallj=1,... mandallk =1,...,n,
then x* is a nondominated type-1I solution of problem (FLP2).
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(B) If there exist positive real numbers A* and LY, and nonnegative real numbers | jand A for j =1,...,m and
k =1, ...,n such that the following conditions are satisfied:

(i) AL - fy chdar+ 2V - [ eYder + 37, ;- fy al,dor — SRy Ak e = 0;
(iv) pj -folg'%[(x*)da =0= X ~x,jf0rallj =1,....mandallk =1, ..., n,
then x* is a nondominated type-II solution of problem (FLP2).

Proof. (A) We consider f(x) and V f(x) as given in (13) and (14). We also consider the following constrained
optimization problem:

(P3) min f(®)
subject to GJL(X) <0,j=1,....,m
gGX)=—x <0,k=1,...,n

where
1
L _ ~L
Gh(x) = /O gk (x)da,

since, for any fixed x, g}a (x) is also Riemann integrable on [0,1] with respect to the variable o by definition. Then we
have

1 1
L _ ~L _ L
VGt (x)—/o nga(x)da_/o ak,da, (19)

since, for any fixed o, g}a (x) is a linear function, i.e., continuously differentiable. Let x* be a feasible solution of
problem (FOP2), i.e., g}a (x*) < 0 for all @ € [0, 1], which implies G]L. (x*) < 0 by taking integration on [0,1] with
respect to «. This shows that x* is also a feasible solution of problem (P3). We are going to prove this result by
contradiction. Suppose that x* is not a nondominated type-II solution. Then there exists a feasible solution X such that
f X) <n f (x*), i.e., (3) is satisfied for all @ € [0, 1]. Applying (14) and (19) to conditions (i) and (ii) of this theorem,
we obtain the following two new conditions:

() VA& + X7y mj - VR + 3 b - Var(x) = 0;
(ii/) Mj- G]L.(x*) =0=A¢-gxx*forall j=1,...,mandk=1,...,n.
The above two conditions can be regarded as the KKT conditions of problem (P3). The remaining proof follows from

the similar arguments of Theorem 4.6.
(B) We consider the following constrained optimization problem:

(P3) min f(x)
subject to G;}(X)f(),jzl’_”’m
gX)=—x<0,k=1,....,n

where
1
Usen ~U
GY(x) = /0 g4, ®de,

since, for any fixed x, gj.fa (x) is also Riemann integrable on [0,1] with respect to the variable « by definition. Then we
can also show that if x* is a feasible solution of problem (FOP2), then x* is a feasible solution of problem (P3’). The
above similar arguments can also be used. This completes the proof. N

Next we are going to present the optimality conditions for problem (FLP2) in the fuzzy-valued form. Let
a=(ay,...,a,) be an n-vector consisting of fuzzy numbers ay, ..., a,. We say that a has the same sign if and only
if, for any fixed o € [0, 1], &il(‘x, i =1,...,n, have the same sign simultaneously (i.e., &iLa >0foralli =1,...,n,or

Ezil(‘x <Oforalli =1,...,n),and &l%, i =1,...,n, have the same sign simultaneously.
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Theorem 4.9. Let x* be a feasible solution of problem (FLP2). Let € = (¢1,...,¢n)! andaj = (a1, ...,a;n)" for
J =1,...,m. We assume that each n-vector a; has the same sign for j =1, ..., m. If there exist nonnegative fuzzy
numbers [i; and M forj=1,....mandk =1, ..., n such that the following conditions are satisfied:

() ¢ [@, (7 0d)] e [@216k®i%0]=@
(i) i; ® gj(x*) —O—Ak® l{x*}forall] =1,....mandk=1,...,n,
then xX* is a nondominated type-1 solution of problem (FLP2).

Proof. We assume that conditions (i) and (ii) are satisfied. The ith component of the formula in condition (i) is given

by
m n » ~ ~
wo | B oan o[ Dot -0 g
where 8;; = 1if i = k and & = 0if i # k. Since fi; and Xk are nonnegative for all j = 1,...,m and all
k=1,...,n, taking the a-level set of (20) by using Proposition 2.1 and Remark 2.1, we then have
+me {luja jta’ Mja jm} Z)‘kaakl _O_cza+2max {'ujot ]lO(’ Mja jta} Z)‘kaakl (21)
foralla € [0, 1] and alli =1, ..., n. Since each a; has the same sign for j =1, ..., m, we can adopt the following

notations. Let 1., 1L, 1Y, and 1 U be index sets defined by

15+—{J a,L,aZO},IaL {J aj a<0} +—{J aﬂazo} and 1] ={j:d§-’ia<0},

which are independent of index i. Then Eq. (21) can be rewritten as

n
L ~L =L ~U =L ~L ~U SL
Gt 2 Malijia+ D Hjajia Zkkaf‘kz =0=¢f+ Z Afaltjia + D jadijia = ) Hadhi
=1

jelk, jell Jeli-
foralla € [0, 1]and alli =1, ..., n; or, equivalently, in vector form,
¢z + Z Rjoda + D Riade Zkkaek—"—c + Z e+ D Mjoaj Zwk
jell jely.

for all @ € [0, 1], which also implies, by adding them together,

m m n
Cé + Cg + Z njaafa + Z Cjaasla - Z)Lkaek =0 (22)
j=1 j=1 k=1
for all ¢ € [0, 1], where
ik, ifjell, ik, ifjell -y
Nje =Y .y .p. L Sie = Y~Uu ... U and  Ara = Agy + Aggy
R if jel, g ifjel,,
are all nonnegative real numbers for all « € [0, 1] and all j = 1, ..., m. We are going to prove this theorem by

contradiction. Suppose that x* is not a nondominated type-I solution. Then there exists a feasible solution X such that
f x) <7 f (x*), i.e., (3) is satisfied for some o™ € [0, 1]. We now define a real-valued function f as in (6) or in (7).
Since g;(x*) < 0and fi; i = 0forall j = 1,...,m, from condition (ii) of this theorem and Proposition 2.2, we see
that

Wi+ o) = [ - 8o %) = [0 - 8o ) = [, - £ () = 0
forallow € [0, 1]and all j =1, ..., m, and

iL Cxf = X ®i * L:O: 5:, ®i * U:il.]-x*
ke "~ Yk k ), k ), ja  rk
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foralla € [0, 1]and all k = 1, ..., n, which imply

Nja - 8o () = 0= - 85, (x) (23)
foralle € [0, 1] and all j = 1,...,m, and

0=)~L,I;a~x,f~|—)~\,((]a-x,f=)\ka-x,f (24)
foralla € [0, 1] and all k = 1, ..., n. Now we consider the following constrained optimization problem:
(P4) min fx)
subjectto  gh,«(x) <0,/ =1,...,m

g%*(x)i(),j:l,...,m
gi(X)=—x<0,k=1,...,n.

Since g;(x*) < 0if and only if g}a (x*) < 0and g% (x*) < Oforall @ € [0, 1], it shows that if x* is a feasible solution
of problem (FLP2) then x* is also a feasible solution of problem (P4). The remaining proof is similar to the arguments
of Theorem 4.6 by considering (22)—(24) and problem (P4). H

5. Examples

Now we introduce the concept of triangular fuzzy number. The membership function of a triangular fuzzy number
a is defined by

(r—aL)/(a—aL) ifal <r<a
& =1w@V -r/@’ —a) ifa<r<a’
0 otherwise,

which is denoted by @ = (a’, a,aV). The graph of membership function of a triangular fuzzy number will be a
triangle. The a-level set (a closed interval) of a is then

iy = [(1 —a)a* +aa, (1 —a)a¥ + aal;
that is,

55 =(1- a)aL +aa and &g =(1- ot)aU + aa. (25)

Example 5.1. Now we consider the following optimization problem with crisp constraints:

min (:5 ® T{m) @ (:é & T{XQ}) @ <:7 ® T{x3}) @ (221 ® T{x4}) @ (:6 & T{x5}>
subject to  2x1 + 3x2 + 3x3 4+ 2x4 + 2x5 < 20
3x1 + 5x0 +4x3 4+ 2x4 + 4x5 < 30
X1, X2, X3, X4, x5 > 0,
where
_:5 = (_67 _57 _3)7 _:8 = (_91 _8’ _6)7 57 = (_87 _77 _4)7
4= (-5,-4,-1), Z6=(-7,-6,-5)
are triangular fuzzy numbers. We are going to apply Theorem 4.2 to obtain the nondominated type-I solution. Using
(25), we obtain

6+« -3 — 2 2 3
O+« —6 —2u 3 5

k=] -8+a|, Y=|-4-3a|, aj=|3]| and ay=|4 (26)
S+« —1 -3« 2 2
T4+« —5—« 2 4
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Let us first solve the system of equations

g1(x) = 2x1 +3x2 +3x3+ 2x4 +2x5 —20=0
g2(X) = 3x1 + 5x2 + 4x3 + 2x4 + 4x5 — 30 = 0.

Then we obtain
X" = (x], x5, x5, x5, x3) = (0,5,0,2.5,0).

We are going to check that this feasible solution x* satisfies the optimality conditions (i) and (ii) in Theorem 4.2.
From condition (ii) in Theorem 4.2, we see that A, = 4 = 0 using x*. Now applying condition (i) to this point x*,
we obtain

2 5
(o) e+ 2T @) e + ) nje)aj =) (@) e
j=l k=1
1 @) - (=6 + @) + 1Y (@) - (=3 = 20) + 2u1 (@) + 3p2(@) — A (@)
W@ - (=9 + @) + 1Y (@) - (=6 = 20) + 31 (@) + Sp2(@)
= [ 25 (@) - (=8 + @) + 1Y (@) - (=4 — 3a) + 31 (@) + 4pa(@) — Az(@) | = 0.
M@ - (=5+a)+ 1Y (@) - (=1 = 3a) + 2u1(a) + 2p2(x)
@) - (=T + ) + 17 (@) - (=5 — @) + 201 (@) + 4ua(@) — As(@)
After some algebraic calculations, we can obtain the positive real-valued functions
A =1=1%0)
and the nonnegative real-valued functions
wi(@) =2a, pr(@)=3—a and I(x)=0fork=1,...,5.
Therefore, x* = (0, 5, 0, 2.5, 0) is a nondominated type-I solution.
Example 5.2. We are going to apply Theorem 4.4 to solve the same problem in Example 5.1 to obtain the
nondominated type-II solution. It is easy to see that the triangular fuzzy numbers are also canonical fuzzy numbers.
Therefore, the assumption in Theorem 4.4 is satisfied. We want to check that x* = (x,x7, x5, x3,x3) =

(0,5,0,2.5, 0) satisfies the optimality conditions in Theorem 4.4. From condition (ii), we see that .o, = 0 = A4.
From (26), we obtain

-55 —4
1 —8.5 1 -7

/cgda= ~7.5| and /cgdaz -55
0 —4.5 0 -2.5
—6.5 -5.5

Applying condition (i) to X*, we obtain

1 1 2 5

AL~/ cﬁda—i—AU-/ cgda+ZMj -a; _Z)‘k - e
0 0 j=1 k=1
=550 — a0V 20 4+ 30 — A
—8.5AF — 7Y 4301 + 51
= | =752F =550V +3u1 +4ur — a3 | =0.
—450F —250Y 4201 + 20
—6.50F —5.50Y 4201 4+ 4us — As
After some algebraic calculations, we obtain

AM=1=AY =1, up=25 and i =0fork=1,...,5.

Therefore, Theorem 4.2 says that x* = (0, 5, 0, 2.5, 0) is a nondominated type-II solution.
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Example 5.3. Now we consider the following optimization problem with fuzzy constraints:

min <—~4 ® i{xl}) ® (:3 ® i{xz}) ( 6® 1{x3}>

subject to (3 ® I{m) o (i ® i{m) (§ ®1 m) ®-30<0

<§®I{xl})@<i®i{x2})@( ®1X3}>63 —40=0
X1, x2,x3 > 0,
where

Th = (—44,—4,-3.6), 3=(-33,-3,-27), —6=(—6.6,—6,—54)
=(051,15), 3=(15,2,2.5), 3= (2.5,3,3.5)
730 = (=32, 30, —28), —40 = (—42, —40, —38).

We are going to apply Theorem 4.7 to obtain the nondominated type-II solution. Using (25), we obtain

—4.4 + 0.4a ~3.6 — 0.4a
ct=1-33+4+03a|, J=|-27-03a],
—6.6 + 0.6c —5.4 — 0.6
2.5+ 0.5 3.5— 0.5« L5+ 0.5 2.5 0.5
al, =[05+05x|, a¥, =[15-05«|, a% =[15+05«| and a, =]|2.5-0.5a
2.5+ 0.5 3.5— 0.5« 2.5+ 0.5 3.5 — 0.5

Now we let
aw=0Gely)e(leiy)e(3eiy)e 30
2(x) = (i ® I{)q}) ® (i ® I{xz}) @ (3 ® i{x3}) ® —40.
Using Proposition 2.1, (25), we obtain
g{ja(x) = (3.5 —-0.5a)x; + (1.5 = 0.5a)x2 + (3.5 — 0.5a)x3 — 28 — 2«
gZQ(X) 2.5-05a)x1 +(2.5—-0.5a)xy + (3.5 —0.5a)x3 — 38 — 2a.
Let us take o™ = 1 and solve the following system of equations:
{g{’l(x) =3x+x+3x3-30=0
g% (x) = 2x1 + 2x2 + 3x3 — 40 = 0.
Then we can obtain
x* = (x], x5, x3) = (0, 10,20/3).

We are going to check that this feasible solution x* satisfies the optimality conditions (iii) and (iv) in Theorem 4.7. It
is easy to see that g, (x*) = 0 for o™ = 1 and j = 1, 2. From condition (iv) in Theorem 4.7, we have 1, = A3 =0
using x*. Now applying condition (iii) to this point x*, we need to solve

—an b — a0 £ 3py 4 200 — A
Akl +ZM, al, Z’\k ee=| -3 -nV 420 |[=0.
j=1 —6al —6xY 301 + 300

After some algebraic calculations, we can obtain
L—-05=2"Y and w1 =pu2=xr; =1.

Therefore, x* = (0, 10, 20/3) is a nondominated type-II solution.
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