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Abstract

The optimality conditions for linear programming problems with fuzzy coefficients are derived in this paper. Two solution
concepts are proposed by considering the orderings on the set of all fuzzy numbers. The solution concepts proposed in this paper
will follow from the similar solution concept, called the nondominated solution, in the multiobjective programming problem. Under
these settings, the optimality conditions will be naturally elicited.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The occurrence of fuzziness in the real world is inevitable owing to some unexpected situations. Therefore,
imposing fuzziness upon conventional optimization problems becomes an interesting research topic. The collection of
papers on fuzzy optimization edited by Słowiński [1] and Delgado et al. [2] gives the main stream of this topic. Lai and
Hwang [3,4] also give an insightful survey. On the other hand, the book edited by Słowiński and Teghem [5] provides
comparisons between fuzzy optimization and stochastic optimization for multiobjective programming problems.

Bellman and Zadeh [6] inspired the development of fuzzy optimization by providing the aggregation operators,
which combined the fuzzy goals and fuzzy decision space. After this motivation and inspiration, there appeared a
lot of articles dealing with fuzzy optimization problems. Some interesting articles are Buckley [7,8], Julien [9] and
Luhandjula et al. [10] using possibility distribution, Herrera et al. [11] and Zimmermann [12,13] using fuzzified
constraints and objective functions, Inuiguchi et al. [14,15] using modality measures, Tanaka and Asai [16] using
fuzzy parameters, and Lee and Li [17–19] considering the de Novo programming problem.

The duality of the fuzzy linear programming problem was firstly studied by Rodder and Zimmermann [20]
considering the economic interpretation of the dual variables. After that, many interesting results regarding the duality
of the fuzzy linear programming problem was investigated by Bector et al. [21–23], Liu et al. [24], Ramı́k [25],
Verdegay [26] and Wu [27]. In this paper, we investigate the optimality conditions for linear programming problems
with fuzzy coefficients.
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In Section 2, we introduce some basic properties and arithmetics of fuzzy numbers. In Section 3, we formulate
two linear programming problems with fuzzy coefficients. One considers crisp (conventional) linear constraints, and
the other considers fuzzy linear constraints. Two solution concepts are proposed for these two problems. In Section 4,
we derive the optimality conditions for these two problems by introducing the multipliers. Finally, in Section 5, three
examples are provided to illustrate the discussions in linear programming problems with fuzzy coefficients.

2. Arithmetics of fuzzy numbers

Let R be the set of all real numbers. The fuzzy subset ã of R is defined by a function ξã : R → [0, 1], which is called
a membership function. The α-level set of ã, denoted by ãα , is defined by ãα = {x ∈ R : ξã(x) ≥ α} for all α ∈ (0, 1].
The 0-level set ã0 is defined as the closure of the set {x ∈ R : ξã(x) > 0}, i.e., ã0 = cl ({x ∈ R : ξã(x) > 0}).

Definition 2.1. We denote by F(R) the set of all fuzzy subsets ã of R with membership function ξã satisfying the
following conditions:

(i) ã is normal, i.e., there exists an x ∈ R such that ξã(x) = 1;
(ii) ξã is quasi-concave, i.e., ξã(λx + (1 − λ)y) ≥ min{ξã(x), ξã(y)} for all x, y ∈ R and λ ∈ [0, 1];

(iii) ξã is upper semicontinuous, i.e., {x ∈ R : ξã(x) ≥ α} = ãα is a closed subset of U for each α ∈ (0, 1];
(iv) the 0-level set ã0 is a compact subset of R.

The member ã in F(R) is called a fuzzy number.

Suppose now that ã ∈ F(R). From Zadeh [28], the α-level set ãα of ã is a convex subset of R for each α ∈ [0, 1]

from condition (ii). Combining this fact with conditions (iii) and (iv), the α-level set ãα of ã is a compact and convex
subset of R for each α ∈ [0, 1], i.e., ãα is a closed interval in R for each α ∈ [0, 1]. Therefore, we also write
ãα =

[
ãL
α , ãU

α

]
.

Definition 2.2. Let ã be a fuzzy number. We say that ã is nonnegative if ãL
α ≥ 0 for all α ∈ [0, 1]. We say that ã is

positive if ãL
α > 0 for all α ∈ [0, 1]. We say that ã is nonpositive if ãU

α ≤ 0 for all α ∈ [0, 1]. We say that ã is negative
if ãU

α < 0 for all α ∈ [0, 1].

Remark 2.1. Let ã be a fuzzy number. Then ãL
α ≤ ãU

α for all α ∈ [0, 1]. Therefore if ã is nonnegative then ãL
α ≥ 0

and ãU
α ≥ 0 for all α ∈ [0, 1], and if ã is positive then ãL

α > 0 and ãU
α > 0 for all α ∈ [0, 1]. We can have similar

consequences for nonpositive and negative fuzzy numbers.

Let “�” be any binary operations ⊕ or ⊗ between two fuzzy numbers ã and b̃. The membership function of ã � b̃
is defined by

ξã�b̃(z) = sup
x◦y=z

min{ξã(x), ξb̃(y)}

using the extension principle in Zadeh [29], where the operations � = ⊕ and ⊗ correspond to the operations ◦ = +

and ×, respectively. Then we have the following results.

Proposition 2.1. Let ã, b̃ ∈ F(R). Then we have

(i) ã ⊕ b̃ ∈ F(R) and

(ã ⊕ b̃)α =

[
ãL
α + b̃L

α , ãU
α + b̃U

α

]
;

(ii) ã ⊗ b̃ ∈ F(R) and

(ã ⊗ b̃)α =

[
min

{
ãL
α b̃L

α , ãL
α b̃U

α , ãU
α b̃L

α , ãU
α b̃U

α

}
, max

{
ãL
α b̃L

α , ãL
α b̃U

α , ãU
α b̃L

α , ãU
α b̃U

α

}]
.

The following proposition is very useful for discussing the optimality conditions.

Proposition 2.2. Let ã be a nonnegative fuzzy number and b̃ be a nonpositive fuzzy number. If ã ⊗ b̃ = 0̃, then
ãL
α b̃L

α = ãL
α b̃U

α = ãU
α b̃L

α = ãU
α b̃U

α = 0 for all α ∈ [0, 1].
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Proof. From Proposition 2.1 (ii), we immediately have that ã ⊗ b̃ = 0̃ implies

ãU
α b̃L

α = 0 = ãL
α b̃U

α (1)

for all α ∈ [0, 1]. Therefore, we need to show that ãL
α b̃L

α = ãU
α b̃U

α = 0 for all α ∈ [0, 1]. We consider the following
cases.

(i) Suppose that b̃U
α 6= 0. Then b̃L

α 6= 0 since b̃L
α ≤ b̃U

α . Therefore, ãL
α = ãU

α = 0 by (1), i.e., ãL
α b̃L

α = ãU
α b̃U

α = 0.
(ii) Suppose that b̃U

α = 0 and b̃L
α = 0. Then it is easy to see that ãL

α b̃L
α = ãU

α b̃U
α = 0.

(iii) Suppose that b̃U
α = 0 and b̃L

α 6= 0. Then it remains to show ãL
α b̃L

α = 0. Since b̃L
α 6= 0 and ãU

α b̃L
α = 0 by (1), we

have ãU
α = 0. Since ã is nonnegative, 0 ≤ ãL

α ≤ ãU
α = 0 shows ãL

α b̃L
α = 0. We complete the proof. �

We say that ã is a crisp number with value m if its membership function is given by

ξã(r) =

{
1 if r = m
0 otherwise.

We also use the notation 1̃{m} to represent the crisp number with value m. It is easy to see that (1̃{m})
L
α = (1̃{m})

U
α = m

for all α ∈ [0, 1]. Let us remark that a real number m can be regarded as a crisp number 1̃{m}.

3. Solution concept

Let A = [aL , aU
] and B = [bL , bU

] be two closed intervals in R. We write B ≤ A if and only if bL
≤ aL and

bU
≤ aU , and B < A if and only if the following conditions are satisfied:{

bL < aL

bU
≤ aU or

{
bL

≤ aL

bU < aU or

{
bL < aL

bU < aU .

Let ã and b̃ be two fuzzy numbers. Then ãα = [ãL
α , ãU

α ] and b̃α = [b̃L
α , b̃U

α ] are two closed intervals in R for all
α ∈ [0, 1]. We write b̃ � ã if and only if b̃α ≤ ãα for all α ∈ [0, 1], or equivalently, b̃L

α ≤ ãL
α and b̃U

α ≤ ãU
α for all

α ∈ [0, 1]. It is easy to see that “�” is a partial ordering on F(R).
For notational convenience, we denote by 0̃ the crisp number 1̃{0} with value 0. Now we consider the following two

linear programming problems with fuzzy coefficients:

(FLP1) min (c̃1 ⊗ 1̃x1) ⊕ · · · ⊕ (c̃n ⊗ 1̃xn )

subject to a j1x1 + · · · + a jn xn + b j ≤ 0 for j = 1, . . . , m

x1, . . . , xn ≥ 0

and

(FLP2) min (c̃1 ⊗ 1̃x1) ⊕ · · · ⊕ (c̃n ⊗ 1̃xn )

subject to (ã j1 ⊗ 1̃x1) ⊕ · · · ⊕ (ã jn ⊗ 1̃xn ) ⊕ b̃ j � 0̃ for j = 1, . . . , m

x1, . . . , xn ≥ 0

where 1̃{xi } is a crisp number with value xi for i = 1, . . . , n. Problem (FLP1) considers the crisp (conventional)
constraints, and problem (FLP2) considers fuzzy constraints. For convenient presentation, we also write

f̃ (x) = (c̃1 ⊗ 1̃x1) ⊕ · · · ⊕ (c̃n ⊗ 1̃xn )

g j (x) = a j1x1 + · · · + a jn xn + b j

g̃ j (x) = (ã j1 ⊗ 1̃x1) ⊕ · · · ⊕ (ã jn ⊗ 1̃xn ) ⊕ b̃ j .

We need to interpret the meaning of minimization in problems (FLP1) and (FLP2). Since “�” is a partial ordering,
not a total ordering, on F(R), we may follow the similar solution concept (the nondominated solution) used in
multiobjective programming problem to interpret the meaning of minimization in problems (FLP1) and (FLP2).
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Two types of nondominated solution will be considered. We write ã ≺I b̃ if and only if ãα ≤ b̃α for all α ∈ [0, 1]

and there exists an α∗
∈ [0, 1] such that ãα∗ < b̃α∗ , i.e.,{

ãL
α∗ < b̃L

α∗

ãU
α∗ ≤ b̃U

α∗

or

{
ãL
α∗ ≤ b̃L

α∗

ãU
α∗ < b̃U

α∗

or

{
ãL
α∗ < b̃L

α∗

ãU
α∗ < b̃U

α∗

. (2)

Therefore, we see that ã ≺I b̃ means ã � b̃ and ã 6= b̃. On the other hand, we write ã ≺II b̃ if and only if ãα < b̃α for
all α ∈ [0, 1], i.e., (2) is satisfied for each α ∈ [0, 1].

Definition 3.1. Let x∗ be a feasible solution of problem (FLP1). We say that x∗ is a nondominated type-I solution
(resp. nondominated type-II solution) of problem (FLP1) if there exists no feasible solution x̄ such that f̃ (x̄) ≺I f̃ (x∗)

(resp. f̃ (x̄) ≺II f̃ (x∗)). The nondominated type-I and type-II solutions can be similarly considered for problem
(FLP2).

In what follows, we are going to provide the optimality conditions for nondominated solution of problems (FLP1)
and (FLP2).

4. The optimality conditions

In order to derive the optimality conditions of problems (FLP1) and (FLP2), we need to recall the
Karush–Kuhn–Tucker conditions for nonlinear programming problem. Let f and g j , j = 1, . . . , m, be real-valued
functions defined on Rn . Then we consider the following (conventional) nonlinear programming problem:

(NLP) min f (x) = f (x1, . . . , xn)

subject to g j (x) ≤ 0, j = 1, . . . , m.

Suppose that the constraint functions g j are convex on Rn for each j = 1, . . . , m. Then the well-known
Karush–Kuhn–Tucker optimality conditions for problem (NLP) (e.g., see Horst et al. [30] or Bazarra et al. [31])
is stated below.

Theorem 4.1. Assume that the constraint functions g j : Rn
→ R are convex on Rn for j = 1, . . . , m. Let

X = {x ∈ Rn
: g j (x) ≤ 0, i = 1, . . . , m} be a feasible set and a point x∗

∈ X. Suppose that the objective
function f : Rn

→ R is convex at x∗, and f , g j , j = 1, . . . , m, are continuously differentiable at x∗. If there exist
(Lagrange) multipliers 0 ≤ µ j ∈ R, j = 1, . . . , m, such that

(i) ∇ f (x∗) +
∑m

i=1 µ j∇g j (x∗) = 0;
(ii) µ j g j (x∗) = 0 for all j = 1, . . . , m,

then x∗ is an optimal solution of problem (NLP).

Now, we are in a position to derive the optimality conditions for problems (FLP1) and (FLP2).

4.1. Crisp (conventional) constraints

Now we consider the problem (FLP1) with crisp constraints. We adopt the following notations:

cL
α =

c̃L
1α
...

c̃L
nα

 , cU
α =

c̃U
1α
...

c̃U
nα

 , and a j =

a j1
...

a jn

 ,

where c̃L
iα = (c̃i )

L
α and c̃U

iα = (c̃i )
U
α for i = 1, . . . , n. We also see that c̃L

iα ≤ c̃U
iα for all α ∈ [0, 1] and all i = 1, . . . , m.

We also denote by ek the unit vector in Rn for k = 1, . . . , n, i.e., the kth component of ek is 1 and the other components
of ek are zero.

Theorem 4.2. Let x∗
= (x∗

1 , . . . , x∗
n ) be a feasible solution of problem (FLP1). If there exist positive real-valued

functions λL and λU defined on [0, 1], and nonnegative real-valued functions µ j and λk for j = 1, . . . , m and
k = 1, . . . , n defined on [0, 1] such that the following conditions are satisfied:
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(i) λL(α) · cL
α + λU (α) · cU

α +
∑m

j=1 µ j (α) · a j −
∑n

k=1 λk(α) · ek = 0 for all α ∈ [0, 1];
(ii) µ j (α) · g j (x∗) = 0 = λk(α) · x∗

k for all α ∈ [0, 1], all j = 1, . . . , m and all k = 1, . . . , n, where
g j (x∗) = a j1x∗

1 + · · · + a jn x∗
n + b j ,

then x∗ is a nondominated type-I solution of problem (FLP1).

Proof. We are going to prove this result by contradiction. Suppose that conditions (i) and (ii) are satisfied and x∗ is
not a nondominated type-I solution. Then there exists a feasible solution x̄ such that f̃ (x̄) ≺I f̃ (x∗), i.e., from (2),{

f̃ L
α∗(x̄) < f̃ L

α∗(x∗)

f̃ U
α∗(x̄) ≤ f̃ U

α∗(x∗)
or

{
f̃ L
α∗(x̄) ≤ f̃ L

α∗(x∗)

f̃ U
α∗(x̄) < f̃ U

α∗(x∗)
or

{
f̃ L
α∗(x̄) < f̃ L

α∗(x∗)

f̃ U
α∗(x̄) < f̃ U

α∗(x∗)
(3)

for some α∗
∈ [0, 1]. Since xi ≥ 0 for i = 1, . . . , n and c̃L

iα ≤ c̃U
iα for all α ∈ [0, 1] and all i = 1, . . . , n, using

Proposition 2.1, we have

f̃ L
α (x) = c̃L

1α · x1 + · · · + c̃L
nα · xn and f̃ U

α (x) = c̃U
1α · x1 + · · · + c̃U

nα · xn . (4)

We also have that

∇ f̃ L
α (x) = cL

α and ∇ f̃ U
α (x) = cU

α . (5)

We now define a real-valued function

f (x) =

(
λL(α∗) · c̃L

1α∗ + λU (α∗) · c̃U
1α∗

)
· x1 + · · · +

(
λL(α∗) · c̃L

nα∗ + λU (α∗) · c̃U
nα∗

)
· xn . (6)

Then we see that

f (x) = λL(α∗) · f̃ L
α∗(x) + λU (α∗) · f̃ U

α∗(x). (7)

Combining (3) and (7), we see that

f (x̄) < f (x∗) (8)

since λL(α∗) > 0 and λU (α∗) > 0. Furthermore, from (5) and (7), we have

∇ f (x) = λL(α∗) · ∇ f̃ L
α∗(x) + λU (α∗) · ∇ f̃ U

α∗(x) = λL(α∗) · cL
α∗ + λU (α∗) · cU

α∗ . (9)

We consider the following constrained optimization problem:

(P1) min f (x)

subject to g j (x) = a j1x1 + · · · + a jn xn + b j ≤ 0, j = 1, . . . , m,

gm+k(x) = −xk ≤ 0, k = 1, . . . , n,

where f is defined in (7). Then problems (P1) and (FLP1) have identical feasible regions. Since conditions (i) and (ii)
of this theorem are satisfied for all α ∈ [0, 1], and a j = ∇g j (x) for all j = 1, . . . , m, according to (9) and for any
fixed α∗

∈ [0, 1], we can obtain the following two new conditions by letting µ jα∗ = µ j (α
∗) ≥ 0 for j = 1, . . . , m,

gm+k(x) = −xk and λkα∗ = λk(α
∗) for k = 1, . . . , n:

(i
′

) ∇ f (x∗) +
∑m

j=1 µ jα∗ · ∇g j (x∗) +
∑n

k=1 λkα∗ · ∇gm+k(x∗) = λL(α∗) · cL
α∗ + λU (α∗) · cU

α∗ +
∑m

j=1 µ j (α
∗) ·

a j −
∑n

k=1 λk(α
∗) · ek = 0;

(ii
′

) µ jα∗ · g j (x∗) = 0 = λkα∗ · gm+k(x∗) for all j = 1, . . . , m and all k = 1, . . . , n.

Using Theorem 4.1, we see that the above conditions (i’) and (ii’) are the KKT conditions for problem (P1). Therefore,
we conclude that x∗ is an optimal solution of problem (P1), i.e., f (x∗) ≤ f (x̄), which contradicts (8). This completes
the proof. �

Remark 4.1. The positive real-valued functions λL and λU , and nonnegative real-valued functions µ j and λk for
j = 1, . . . , m and k = 1, . . . , n can be constructed as follows. For any fixed α ∈ [0, 1], if there exist positive real
numbers λL

α and λU
α , and nonnegative real numbers λkα and µ jα for j = 1, . . . , m and k = 1, . . . , n such that the

following conditions are satisfied:
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(a) λL
α · cL

α + λU
α · cU

α +
∑m

j=1 µ jα · a j −
∑n

k=1 λkα · ek = 0;
(b) µ jα · g j (x∗) = 0 = λkα · x∗

k for all j = 1, . . . , m and k = 1, . . . , n,

then we can define the positive real-valued functions λL(α) = λL
α and λU (α) = λU

α for all α ∈ [0, 1], and the
nonnegative real-valued functions µ j (α) = µ jα and λk(α) = λkα for all α ∈ [0, 1], all j = 1, . . . , m and all
k = 1, . . . , n. Therefore, if the above conditions (a) and (b) are satisfied for all α ∈ [0, 1], then x∗ is a nondominated
type-I solution of problem (FLP1) by Theorem 4.2.

Theorem 4.3. Let x∗
= (x∗

1 , . . . , x∗
n ) be a feasible solution of problem (FLP1). If there exist positive real numbers

λL and λU , nonnegative real numbers µ j and λk for j = 1, . . . , m and k = 1, . . . , n, and α∗
∈ [0, 1] such that the

following conditions are satisfied:

(i) λL
· cL

α∗ + λU
· cU

α∗ +
∑m

j=1 µ j · a j −
∑n

k=1 λk · ek = 0;
(ii) µ j · g j (x∗) = 0 = λk · x∗

k for all j = 1, . . . , m and all k = 1, . . . , n,

then x∗ is a nondominated type-II solution of problem (FLP1).

Proof. We are going to prove this result by contradiction. Suppose that conditions (i) and (ii) are satisfied and x∗ is not
a nondominated type-II solution. Then there exists a feasible solution x̄ such that f̃ (x̄) ≺II f̃ (x∗), i.e., (3) is satisfied
for all α ∈ [0, 1]. For α∗ in conditions (i) and (ii), we can define a real-valued function

f (x) = (λL
· c̃L

1α∗ + λU
· c̃U

1α∗) · x1 + · · · + (λL
· c̃L

nα∗ + λU
· c̃U

nα∗) · xn . (10)

Then we see that

f (x) = λL
· f̃ L

α∗(x) + λU
· f̃ U

α∗(x) (11)

and

∇ f (x) = λL
· ∇ f̃ L

α∗(x) + λU
· ∇ f̃ U

α∗(x) = λL
· cL

α∗ + λU
· cU

α∗ . (12)

Now we consider the constrained optimization problem (P1) as in the proof of Theorem 4.2. Then we can obtain the
following two new conditions:

(i
′

) ∇ f (x∗)+
∑m

j=1 µ j ·∇g j (x∗)+
∑n

k=1 λk ·∇gm+k(x∗) = λL
· cL

α∗ +λU
· cU

α∗ +
∑m

j=1 µ j ·a j −
∑n

k=1 λk · ek = 0;

(ii
′

) µ j · g j (x∗) = 0 = λk · gm+k(x∗) for all j = 1, . . . , m and all k = 1, . . . , n.

The remaining proof follows from the similar arguments of Theorem 4.2. �

We are going to present another type of optimality conditions for a nondominated type-II solution without
considering α∗.

Definition 4.1. Let ã be a fuzzy number. We say that ã is a canonical fuzzy number if the functions η1(α) = ãL
α and

η2(α) = ãU
α are continuous on [0,1].

Remark 4.2. Let ã be a fuzzy number and its membership function be strictly increasing on the interval
[
ãL

0 , ãL
1

]
and strictly decreasing on the interval

[
ãU

1 , ãU
0

]
. Then, from the fact of strict monotonicity, ãL

α and ãU
α are continuous

functions with respect to the variable α on [0,1]. This shows that ã is a canonical fuzzy number.

Let f : [a, b] → Rn be a vector-valued function defined on the closed interval such that each component fi ,
i = 1, . . . , n, is continuous on [a, b]. Then the Riemann integral of f on [a, b] is defined to be the Riemann integral
of each component fi on [a, b]. More precisely, we have∫ b

a
f(x)dx =

[∫ b

a
f1(x)dx, . . . ,

∫ b

a
fn(x)dx

]
.

Now we are in a position to present another type of optimality conditions by considering the Riemann integral.
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Theorem 4.4. Suppose that the fuzzy coefficients c̃i for i = 1, . . . , n in the fuzzy-valued objective function f̃ are now
assumed to be canonical fuzzy numbers. Let x∗

= (x∗

1 , . . . , x∗
n ) be a feasible solution of problem (FLP1). If there exist

positive real numbers λL and λU , and nonnegative real numbers µ j and λk for j = 1, . . . , m and k = 1, . . . , n such
that the following conditions are satisfied:

(i) λL
·
∫ 1

0 cL
α dα + λU

·
∫ 1

0 cU
α dα +

∑m
j=1 µ j · a j −

∑n
k=1 λk · ek = 0;

(ii) µ j · g j (x∗) = 0 = λk · x∗

k for all j = 1, . . . , m and all k = 1, . . . , n,

then x∗ is a nondominated type-II solution of problem (FLP1).

Proof. For any fixed x, since f̃ L
α (x) and f̃ U

α (x) are continuous on [0,1] with respect to the variable α by definition,
they will be Riemann integrable on [0,1] with respect to α. Therefore, we can define a real-valued function as follows:

f (x) = λL
·

∫ 1

0
f̃ L
α (x)dα + λU

·

∫ 1

0
f̃ U
α (x)dα. (13)

For any fixed α, since f̃ L
α (x) and f̃ U

α (x) are linear functions, that is, they are continuously differentiable, by Rudin [32,
Theorem 9.42], we have

∇ f (x) = λL
·

∫ 1

0
∇ f̃ L

α (x)dα + λU
·

∫ 1

0
∇ f̃ U

α (x)dα = λL
·

∫ 1

0
cL
α dα + λU

·

∫ 1

0
cU
α dα. (14)

It also says that condition (i) of this theorem is well defined. We are going to prove this result by contradiction. Suppose
that x∗ is not a nondominated type-II solution. Then there exists a feasible solution x̄ such that f̃ (x̄) ≺II f̃ (x∗), i.e., (3)
is satisfied for all α ∈ [0, 1]. Therefore, we have

λL
· f̃ L

α (x̄) + λU
· f̃ U

α (x̄) < λL
· f̃ L

α (x∗) + λU
· f̃ U

α (x∗)

for all α ∈ [0, 1] since λL > 0 and λU > 0. By taking integration with respect to α on [0,1] and using (13), we obtain
f (x̄) < f (x∗). Now we consider the constrained optimization problem (P1) as in the proof of Theorem 4.2. Applying
(14) to conditions (i) and (ii) of this theorem, we obtain the following two new conditions:

(i
′

) ∇ f (x∗) +
∑m

j=1 µ j · ∇g j (x∗) +
∑n

k=1 λk · ∇gm+k(x∗) = 0;

(ii
′

) µ j · g j (x∗) = 0 = λk · gm+k(x∗) for all j = 1, . . . , m and all k = 1, . . . , n.

The remaining proof follows from the similar arguments of Theorem 4.2. �

Remark 4.3. From the proof of Theorem 4.4, we see that if the function f in (13) is defined as

f (x) =

∫ 1

0
f̃ L
α (x)dα +

∫ 1

0
f̃ U
α (x)dα,

then Theorem 4.4 still holds true if condition (i) is replaced by the following new condition:∫ 1

0
cL
α dα +

∫ 1

0
cU
α dα +

m∑
j=1

µ j · a j −

n∑
k=1

λk · ek = 0.

Now we are going to present the optimality conditions of problem (FLP1) in the fuzzy-valued form. We write

0̃ = (0̃, . . . , 0̃)T . Let x be an n-vector in Rn . Then the crisp vector 1̃{x} is defined as 1̃{x} =

(
1̃{x1}, 1̃{x2}, . . . , 1̃{xn}

)
.

Let a = (a1, . . . , an) be an n-vector in Rn . We say that a has the same sign if and only if ai ≥ 0 for all i = 1, . . . , n
simultaneously, or ai < 0 for all i = 1, . . . , n simultaneously (i.e., the components of vector a have the same sign).
Or, equivalently, a has the same sign if and only if a ≥ 0 or a < 0.

Theorem 4.5. Let x∗ be a feasible solution of problem (FLP1). Let c̃ = (c̃1, . . . , c̃n)T . We assume that each vector
a j = ∇g j (x) has the same sign for j = 1, . . . , m. If there exist nonnegative fuzzy numbers µ̃ j , λ̃k ∈ F(R) for
j = 1, . . . , m and k = 1, . . . , n such that the following conditions are satisfied:

(i) c̃ ⊕

[⊕m
j=1

(
µ̃ j ⊗ 1̃{a j }

)]
⊕

[⊕n
k=1

(
λ̃k ⊗ 1̃{−ek }

)]
= 0̃;
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(ii) µ̃ j ⊗ 1̃{g j (x∗)} = 0̃ = λ̃k ⊗ 1̃{x∗
k } for all j = 1, . . . , m and k = 1, . . . , n,

then x∗ is a nondominated type-I solution of problem (FLP1).

Proof. We assume that conditions (i) and (ii) are satisfied. Let I+ ⊆ {1, . . . , m} and I− ⊆ {1, . . . , m} be the index
sets defined by

I+ = { j : a j ≥ 0} and I− = { j : a j < 0}.

Since

1̃{a j } =

(
1̃{a j1}, 1̃{a j2}, . . . , 1̃{a jn}

)T
,

the i th component of the formula in condition (i) is given by

c̃i ⊕

[
m⊕

j=1

(
µ̃ j ⊗ 1̃{a j i }

)]
⊕

[
n⊕

k=1

(
λ̃k ⊗ 1̃{−δki }

)]
= 0̃, (15)

where δki = 1 if i = k and δki = 0 if i 6= k. Since µ̃ j and λ̃k are nonnegative fuzzy numbers for all j = 1, . . . , m
and all k = 1, . . . , n, we have that (µ̃ j )

L
α = µ̃L

jα , (µ̃ j )
U
α = µ̃U

jα , (λ̃ j )
L
α = λ̃L

jα and (λ̃ j )
U
α = λ̃U

jα are nonnegative real
numbers by Remark 2.1 for all α ∈ [0, 1], all j = 1, . . . , m and all k = 1, . . . , n. Taking the α-level set of (15) by
using Proposition 2.1, we have

c̃L
iα +

∑
j∈I+

µ̃L
jα · a j i +

∑
j∈I−

µ̃U
jα · a j i −

n∑
k=1

λ̃U
kα · δki = 0 = c̃U

iα +

∑
j∈I+

µ̃U
jα · a j i +

∑
j∈I−

µ̃L
jα · a j i −

n∑
k=1

λ̃L
kα · δki

for all α ∈ [0, 1] and all i = 1, . . . , n. Equivalently, in vector form, we have

cL
α +

∑
j∈I+

µ̃L
jα · a j +

∑
j∈I−

µ̃U
jα · a j −

n∑
k=1

λ̃U
kα · ek = 0 = cU

α +

∑
j∈I+

µ̃U
jα · a j +

∑
j∈I−

µ̃L
jα · a j −

n∑
k=1

λ̃L
kα · ek

for all α ∈ [0, 1], which also implies, by adding them together,

cL
α + cU

α +

m∑
j=1

µ jα · a j −

n∑
k=1

λkα · ek = 0 (16)

for all α ∈ [0, 1], where µ jα = µ̃L
jα + µ̃U

jα and λkα = λ̃L
kα + λ̃U

kα are nonnegative real numbers for all α ∈ [0, 1],
all j = 1, . . . , m and all k = 1, . . . , n. We are going to prove this theorem by contradiction. Suppose that x∗ is not a
nondominated type-I solution. Then there exists a feasible solution x̄ such that f̃ (x̄) ≺I f̃ (x∗), i.e., (3) is satisfied for
some α∗

∈ [0, 1]. We now define a real-valued function f as in (6) or in (7). Since g j (x∗) ≤ 0 for all j = 1, . . . , m
and x∗

k ≥ 0 for all k = 1, . . . , n, taking the α-level set of condition (ii) by using Proposition 2.1, we obtain that

µ̃U
jα · g j (x∗) =

(
µ̃ j ⊗ 1̃{g j (x∗)}

)L

α
= 0 =

(
µ̃ j ⊗ 1̃{g j (x∗)}

)U

α
= µ̃L

jα · g j (x∗)

for all α ∈ [0, 1] and all j = 1, . . . , m and

λ̃L
kα · x∗

k =

(
λ̃k ⊗ 1̃{x∗

k }

)L

α
= 0 =

(
λ̃k ⊗ 1̃{x∗

k }

)U

α
= λ̃U

jα · x∗

k

for all α ∈ [0, 1] and all k = 1, . . . , n, which imply, by adding them together,

0 = µ̃L
jα · g j (x∗) + µ̃U

jα · g j (x∗) = µ jα · g j (x∗) (17)

for all α ∈ [0, 1] and all j = 1, . . . , m and

0 = λ̃L
kα · x∗

k + λ̃U
kα · x∗

k = λkα · x∗

k (18)

for all α ∈ [0, 1] and all k = 1, . . . , n. Now we consider the constrained optimization problem (P1) as in the proof of
Theorem 4.2. According to Eqs. (16)–(18) and (9), we obtain the following two new conditions:
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(i
′

) ∇ f (x∗) +
∑m

j=1 µ jα∗ · ∇g j (x∗) +
∑n

k=1 λkα∗ · ∇gm+k(x∗) = 0 (note that (16) is satisfied for all α ∈ [0, 1]);

(ii
′

) µ jα∗ · g j (x∗) = 0 = λkα∗ · gm+k(x∗) for all j = 1, . . . , m and all k = 1, . . . , n (note that (17) and (18) are
satisfied for all α ∈ [0, 1]).

Using Theorem 4.1, we see that x∗ is an optimal solution of problem (P1) by regarding conditions (i’) and (ii’) as the
KKT conditions, i.e., f (x∗) ≤ f (x̄), which contradicts (8). This completes the proof. �

4.2. Fuzzy constraints

Now we are going to derive the optimality conditions for problem (FLP2) with fuzzy constraints. We recall that
the fuzzy constraints are presented as

g̃ j (x) = (ã j1 ⊗ 1̃x1) ⊕ · · · ⊕ (ã jn ⊗ 1̃xn ) ⊕ b̃ j

for j = 1, . . . , m. Using Proposition 2.1, we obtain

g̃L
jα(x) ≡ (g̃ j )

L
α (x) = ãL

j1α · x1 + · · · + ãL
jnα · xn + b̃L

jα

g̃U
jα(x) ≡ (g̃ j )

U
α (x) = ãU

j1α · x1 + · · · + ãU
jnα · xn + b̃U

jα

for α ∈ [0, 1], where

b̃L
jα = (b̃ j )

L
α , b̃U

jα = (b̃ j )
U
α , ãL

jiα = (ã j i )
L
α and ãU

jiα = (ã j i )
U
α .

We also write

aL
jα =

ãL
j1α

...

ãL
jnα

 and aU
jα =

ãU
j1α

...

ãU
jnα

 .

Then aL
jα = ∇ g̃L

jα(x) and aU
jα = ∇ g̃U

jα(x). Now we are in a position to derive the optimality conditions of problem
(FLP2).

Theorem 4.6. Let x∗ be a feasible solution of problem (FLP2).
(A) If there exist positive real-valued functions λL and λU defined on [0,1], and nonnegative real-valued functions
µ j and λk for j = 1, . . . , m and k = 1, . . . , n defined on [0,1] such that the following conditions are satisfied:

(i) λL(α) · cL
α + λU (α) · cU

α +
∑m

j=1 µ j (α) · aL
jα −

∑n
k=1 λk(α) · ek = 0 for all α ∈ [0, 1];

(ii) µ j (α) · g̃L
jα(x∗) = 0 = λk(α) · x∗

k for all α ∈ [0, 1], all j = 1, . . . , m and all k = 1, . . . , n,

then x∗ is a nondominated type-I solution of problem (FLP2).
(B) If there exist positive real-valued functions λL and λU defined on [0,1], and nonnegative real-valued functions µ j
and λk for j = 1, . . . , m and k = 1, . . . , n defined on [0,1] such that the following conditions are satisfied:

(iii) λL(α) · cL
α + λU (α) · cU

α +
∑m

j=1 µ j (α) · aU
jα −

∑n
k=1 λk(α) · ek = 0 for all α ∈ [0, 1];

(iv) µ j (α) · g̃U
jα(x∗) = 0 = λk(α) · x∗

k for all α ∈ [0, 1], all j = 1, . . . , m and all k = 1, . . . , n,

then x∗ is a nondominated type-I solution of problem (FLP2).

Proof. (A) We are going to prove this result by contradiction. Suppose that conditions (i) and (ii) are satisfied and
x∗ is not a nondominated type-I solution. Then there exists a feasible solution x̄ such that f̃ (x̄) ≺I f̃ (x∗), i.e., (3) is
satisfied for some α∗

∈ [0, 1]. We now define a real-valued function f as in (6) or in (7) and consider the following
constrained optimization problem:

(P2) min f (x)

subject to g̃L
jα∗(x) ≤ 0, j = 1, . . . , m

gk(x) = −xk ≤ 0, k = 1, . . . , n.
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We see that g̃ j (x∗) � 0̃ implies g̃L
jα(x∗) ≤ 0 and g̃U

jα(x∗) ≤ 0 for all α ∈ [0, 1]. This shows that if x∗ is
a feasible solution of problem (FLP2), then x∗ is also a feasible solution of problem (P2). From (9) and letting
µ jα∗ = µ j (α

∗) ≥ 0 for j = 1, . . . , m and λkα∗ = λk(α
∗) for k = 1, . . . , n, we obtain the following two new

conditions from conditions (i) and (ii):

(i
′

) ∇ f (x∗)+
∑m

j=1 µ jα∗ ·∇ g̃L
jα∗(x∗)+

∑n
k=1 λkα∗ ·∇gk(x∗) = λL(α∗) ·cL

α∗ +λU (α∗) ·cU
α∗ +

∑m
j=1 µ j (α

∗) ·aL
jα∗ −∑n

k=1 λkα∗ek = 0;
(ii

′

) µ jα∗ · g̃L
jα∗(x∗) = 0 = λkα∗ · gk(x∗) for all j = 1, . . . , m and all k = 1, . . . , n.

Using Theorem 4.1, we see that x∗ is an optimal solution of problem (P2) by regarding the above conditions (i’) and
(ii’) as the KKT conditions, i.e., f (x∗) ≤ f (x̄), which contradicts (8).

(B) We now consider the following constrained optimization problem:

(P2′) min f (x)

subject to g̃U
jα∗(x) ≤ 0, j = 1, . . . , m

gk(x) = −xk ≤ 0, k = 1, . . . , n.

Then we see that if x∗ is a feasible solution of problem (FLP2), then x∗ is also a feasible solution of problem (P2’).
The above similar arguments can also be used. This completes the proof. �

Theorem 4.7. Let x∗ be a feasible solution of problem (FLP2).
(A) If there exist positive real numbers λL and λU , nonnegative real numbers µ j and λk for j = 1, . . . , m and
k = 1, . . . , n, and α∗

∈ [0, 1] such that the following conditions are satisfied:

(i) λL
· cL

α∗ + λU
· cU

α∗ +
∑m

j=1 µ j · aL
jα∗ −

∑n
k=1 λk · ek = 0;

(ii) µ j · g̃L
jα∗(x∗) = 0 = λk · x∗

k for all j = 1, . . . , m and all k = 1, . . . , n,

then x∗ is a nondominated type-II solution of problem (FLP2).
(B) If there exist positive real numbers λL and λU , nonnegative real numbers µ j and λk for j = 1, . . . , m and
k = 1, . . . , n, and α∗

∈ [0, 1] such that the following conditions are satisfied:

(iii) λL
· cL

α∗ + λU
· cU

α∗ +
∑m

j=1 µ j · aU
jα∗ −

∑n
k=1 λk · ek = 0;

(iv) µ j · g̃U
jα∗(x∗) = 0 = λk · x∗

k for all j = 1, . . . , m and all k = 1, . . . , n,

then x∗ is a nondominated type-II solution of problem (FLP2).

Proof. (A) We are going to prove this result by contradiction. Suppose that conditions (i) and (ii) are satisfied and
x∗ is not a nondominated type-II solution. Then there exists a feasible solution x̄ such that f̃ (x̄) ≺II f̃ (x∗), i.e., (3) is
satisfied for all α ∈ [0, 1]. For α∗ in conditions (i) and (ii), we now define a real-valued function f as in (10) or in
(11). Then we have ∇ f (x) = λL

· cL
α∗ + λU

· cU
α∗ from (12). Now we consider the constrained optimization problem

(P2) as in the proof of Theorem 4.6. Then we can obtain the following two new conditions:

(i
′

) ∇ f (x∗)+
∑m

j=1 µ j ·∇ g̃L
jα∗(x∗)+

∑n
k=1 λk ·∇gk(x∗) = λL

·cL
α∗ +λU

·cU
α∗ +

∑m
j=1 µ j ·aL

jα∗ −
∑n

k=1 λk ·ek = 0;

(ii
′

) µ j · g̃L
jα∗(x∗) = 0 = λk · gk(x∗) for all j = 1, . . . , m and all k = 1, . . . , n.

The remaining proof follows from the similar arguments of Theorem 4.6.
(B) The above similar arguments can be used by considering problem (P2′). �

Theorem 4.8. Suppose that the fuzzy coefficients c̃i in the fuzzy-valued objective function f̃ and ã j i in the fuzzy-
valued constraint functions g̃ j for i = 1, . . . , n and j = 1, . . . , m are now assumed to be canonical fuzzy numbers.
Let x∗ be a feasible solution of problem (FLP2).
(A) If there exist positive real numbers λL and λU , and nonnegative real numbers µ j and λk for j = 1, . . . , m and
k = 1, . . . , n such that the following conditions are satisfied:

(i) λL
·
∫ 1

0 cL
α dα + λU

·
∫ 1

0 cU
α dα +

∑m
j=1 µ j ·

∫ 1
0 aL

jαdα −
∑n

k=1 λk · ek = 0;

(ii) µ j ·
∫ 1

0 g̃L
jα(x∗)dα = 0 = λk · x∗

k for all j = 1, . . . , m and all k = 1, . . . , n,

then x∗ is a nondominated type-II solution of problem (FLP2).
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(B) If there exist positive real numbers λL and λU , and nonnegative real numbers µ j and λk for j = 1, . . . , m and
k = 1, . . . , n such that the following conditions are satisfied:

(iii) λL
·
∫ 1

0 cL
α dα + λU

·
∫ 1

0 cU
α dα +

∑m
j=1 µ j ·

∫ 1
0 aU

jαdα −
∑n

k=1 λk · ek = 0;

(iv) µ j ·
∫ 1

0 g̃U
jα(x∗)dα = 0 = λk · x∗

k for all j = 1, . . . , m and all k = 1, . . . , n,

then x∗ is a nondominated type-II solution of problem (FLP2).

Proof. (A) We consider f (x) and ∇ f (x) as given in (13) and (14). We also consider the following constrained
optimization problem:

(P3) min f (x)

subject to GL
j (x) ≤ 0, j = 1, . . . , m

gk(x) = −xk ≤ 0, k = 1, . . . , n

where

GL
j (x) =

∫ 1

0
g̃L

jα(x)dα,

since, for any fixed x, g̃L
jα(x) is also Riemann integrable on [0,1] with respect to the variable α by definition. Then we

have

∇GL
j (x) =

∫ 1

0
∇ g̃L

jα(x)dα =

∫ 1

0
aL

jαdα, (19)

since, for any fixed α, g̃L
jα(x) is a linear function, i.e., continuously differentiable. Let x∗ be a feasible solution of

problem (FOP2), i.e., g̃L
jα(x∗) ≤ 0 for all α ∈ [0, 1], which implies GL

j (x
∗) ≤ 0 by taking integration on [0,1] with

respect to α. This shows that x∗ is also a feasible solution of problem (P3). We are going to prove this result by
contradiction. Suppose that x∗ is not a nondominated type-II solution. Then there exists a feasible solution x̄ such that
f̃ (x̄) ≺II f̃ (x∗), i.e., (3) is satisfied for all α ∈ [0, 1]. Applying (14) and (19) to conditions (i) and (ii) of this theorem,
we obtain the following two new conditions:

(i
′

) ∇ f (x∗) +
∑m

j=1 µ j · ∇GL
j (x

∗) +
∑n

k=1 λk · ∇gk(x∗) = 0;

(ii
′

) µ j · GL
j (x

∗) = 0 = λk · gk(x∗) for all j = 1, . . . , m and k = 1, . . . , n.

The above two conditions can be regarded as the KKT conditions of problem (P3). The remaining proof follows from
the similar arguments of Theorem 4.6.
(B) We consider the following constrained optimization problem:

(P3′) min f (x)

subject to GU
j (x) ≤ 0, j = 1, . . . , m

gk(x) = −xk ≤ 0, k = 1, . . . , n

where

GU
j (x) =

∫ 1

0
g̃U

jα(x)dα,

since, for any fixed x, g̃U
jα(x) is also Riemann integrable on [0,1] with respect to the variable α by definition. Then we

can also show that if x∗ is a feasible solution of problem (FOP2), then x∗ is a feasible solution of problem (P3’). The
above similar arguments can also be used. This completes the proof. �

Next we are going to present the optimality conditions for problem (FLP2) in the fuzzy-valued form. Let
ã = (ã1, . . . , ãn) be an n-vector consisting of fuzzy numbers ã1, . . . , ãn . We say that ã has the same sign if and only
if, for any fixed α ∈ [0, 1], ãL

iα , i = 1, . . . , n, have the same sign simultaneously (i.e., ãL
iα ≥ 0 for all i = 1, . . . , n, or

ãL
iα < 0 for all i = 1, . . . , n), and ãU

iα , i = 1, . . . , n, have the same sign simultaneously.
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Theorem 4.9. Let x∗ be a feasible solution of problem (FLP2). Let c̃ = (c̃1, . . . , c̃n)T and ã j = (ã j1, . . . , ã jn)T for
j = 1, . . . , m. We assume that each n-vector ã j has the same sign for j = 1, . . . , m. If there exist nonnegative fuzzy
numbers µ̃ j and λ̃k for j = 1, . . . , m and k = 1, . . . , n such that the following conditions are satisfied:

(i) c̃ ⊕

[⊕m
j=1

(
µ̃ j ⊗ ã j

)]
⊕

[⊕n
k=1

(
λ̃k ⊗ 1̃{−ek }

)]
= 0̃;

(ii) µ̃ j ⊗ g̃ j (x∗) = 0̃ = λ̃k ⊗ 1̃{x∗
k } for all j = 1, . . . , m and k = 1, . . . , n,

then x∗ is a nondominated type-I solution of problem (FLP2).

Proof. We assume that conditions (i) and (ii) are satisfied. The i th component of the formula in condition (i) is given
by

c̃i ⊕

[
m⊕

j=1

(
µ̃ j ⊗ ã j i

)]
⊕

[
n⊕

k=1

(
λ̃k ⊗ 1̃{−δki }

)]
= 0̃, (20)

where δki = 1 if i = k and δki = 0 if i 6= k. Since µ̃ j and λ̃k are nonnegative for all j = 1, . . . , m and all
k = 1, . . . , n, taking the α-level set of (20) by using Proposition 2.1 and Remark 2.1, we then have

c̃L
iα +

m∑
j=1

min
{
µ̃L

jα ãL
jiα, µ̃U

jα ãL
jiα

}
−

n∑
k=1

λ̃U
kαδki = 0 = c̃U

iα +

m∑
j=1

max
{
µ̃L

jα ãU
jiα, µ̃U

jα ãU
jiα

}
−

n∑
k=1

λ̃L
kαδki (21)

for all α ∈ [0, 1] and all i = 1, . . . , n. Since each ã j has the same sign for j = 1, . . . , m, we can adopt the following
notations. Let I L

α+, I L
α−, I U

α+ and I U
α− be index sets defined by

I L
α+ =

{
j : ãL

jiα ≥ 0
}

, I L
α− =

{
j : ãL

jiα < 0
}

, I U
α+ =

{
j : ãU

jiα ≥ 0
}

and I U
α− =

{
j : ãU

jiα < 0
}

,

which are independent of index i . Then Eq. (21) can be rewritten as

c̃L
iα +

∑
j∈I L

α+

µ̃L
jα ãL

jiα +

∑
j∈I L

α−

µ̃U
jα ãL

jiα −

n∑
k=1

λ̃U
kαδki = 0 = c̃U

iα +

∑
j∈I U

α+

µ̃U
jα ãU

jiα +

∑
j∈I U

α−

µ̃L
jα ãU

jiα −

n∑
k=1

λ̃L
kαδki

for all α ∈ [0, 1] and all i = 1, . . . , n; or, equivalently, in vector form,

cL
α +

∑
j∈I L

α+

µ̃L
jαaL

jα +

∑
j∈I L

α−

µ̃U
jαaL

jα −

n∑
k=1

λ̃U
kαek = 0 = cU

α +

∑
j∈I U

α+

µ̃U
jαaU

jα +

∑
j∈I U

α−

µ̃L
jαaU

jα −

n∑
k=1

λ̃L
kαek

for all α ∈ [0, 1], which also implies, by adding them together,

cL
α + cU

α +

m∑
j=1

η jαaL
jα +

m∑
j=1

ζ jαaU
jα −

n∑
k=1

λkαek = 0 (22)

for all α ∈ [0, 1], where

η jα =

{
µ̃L

jα if j ∈ I L
α+

µ̃U
jα if j ∈ I L

α−

, ζ jα =

{
µ̃L

jα if j ∈ I U
α−

µ̃U
jα if j ∈ I U

α+

and λkα = λ̃L
kα + λ̃U

kα

are all nonnegative real numbers for all α ∈ [0, 1] and all j = 1, . . . , m. We are going to prove this theorem by
contradiction. Suppose that x∗ is not a nondominated type-I solution. Then there exists a feasible solution x̄ such that
f̃ (x̄) ≺I f̃ (x∗), i.e., (3) is satisfied for some α∗

∈ [0, 1]. We now define a real-valued function f as in (6) or in (7).
Since g̃ j (x∗) � 0̃ and µ̃ j � 0̃ for all j = 1, . . . , m, from condition (ii) of this theorem and Proposition 2.2, we see
that

µ̃L
jα · g̃L

jα(x∗) = µ̃L
jα · g̃U

jα(x∗) = µ̃U
jα · g̃L

jα(x∗) = µ̃U
jα · g̃U

jα(x∗) = 0

for all α ∈ [0, 1] and all j = 1, . . . , m, and

λ̃L
kα · x∗

k =

(
λ̃k ⊗ 1̃{x∗

k }

)L

α
= 0 =

(
λ̃k ⊗ 1̃{x∗

k }

)U

α
= λ̃U

jα · x∗

k
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for all α ∈ [0, 1] and all k = 1, . . . , n, which imply

η jα · g̃L
jα(x∗) = 0 = ζ jα · g̃U

jα(x∗) (23)

for all α ∈ [0, 1] and all j = 1, . . . , m, and

0 = λ̃L
kα · x∗

k + λ̃U
kα · x∗

k = λkα · x∗

k (24)

for all α ∈ [0, 1] and all k = 1, . . . , n. Now we consider the following constrained optimization problem:

(P4) min f (x)

subject to g̃L
jα∗(x) ≤ 0, j = 1, . . . , m

g̃U
jα∗(x) ≤ 0, j = 1, . . . , m

gk(x) = −xk ≤ 0, k = 1, . . . , n.

Since g̃ j (x∗) � 0̃ if and only if g̃L
jα(x∗) ≤ 0 and g̃U

jα(x∗) ≤ 0 for all α ∈ [0, 1], it shows that if x∗ is a feasible solution
of problem (FLP2) then x∗ is also a feasible solution of problem (P4). The remaining proof is similar to the arguments
of Theorem 4.6 by considering (22)–(24) and problem (P4). �

5. Examples

Now we introduce the concept of triangular fuzzy number. The membership function of a triangular fuzzy number
ã is defined by

ξã(r) =


(r − aL)/(a − aL) if aL

≤ r ≤ a

(aU
− r)/(aU

− a) if a < r ≤ aU

0 otherwise,

which is denoted by ã = (aL , a, aU ). The graph of membership function of a triangular fuzzy number will be a
triangle. The α-level set (a closed interval) of ã is then

ãα = [(1 − α)aL
+ αa, (1 − α)aU

+ αa];

that is,

ãL
α = (1 − α)aL

+ αa and ãU
α = (1 − α)aU

+ αa. (25)

Example 5.1. Now we consider the following optimization problem with crisp constraints:

min
(
−̃5 ⊗ 1̃{x1}

)
⊕

(
−̃8 ⊗ 1̃{x2}

)
⊕

(
−̃7 ⊗ 1̃{x3}

)
⊕

(
−̃4 ⊗ 1̃{x4}

)
⊕

(
−̃6 ⊗ 1̃{x5}

)
subject to 2x1 + 3x2 + 3x3 + 2x4 + 2x5 ≤ 20

3x1 + 5x2 + 4x3 + 2x4 + 4x5 ≤ 30
x1, x2, x3, x4, x5 ≥ 0,

where

−̃5 = (−6, −5, −3), −̃8 = (−9, −8, −6), −̃7 = (−8, −7, −4),

−̃4 = (−5, −4, −1), −̃6 = (−7, −6, −5)

are triangular fuzzy numbers. We are going to apply Theorem 4.2 to obtain the nondominated type-I solution. Using
(25), we obtain

cL
α =


−6 + α

−9 + α

−8 + α

−5 + α

−7 + α

 , cU
α =


−3 − 2α

−6 − 2α

−4 − 3α

−1 − 3α

−5 − α

 , a1 =


2
3
3
2
2

 and a2 =


3
5
4
2
4

 . (26)
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Let us first solve the system of equations{
g1(x) = 2x1 + 3x2 + 3x3 + 2x4 + 2x5 − 20 = 0

g2(x) = 3x1 + 5x2 + 4x3 + 2x4 + 4x5 − 30 = 0.

Then we obtain

x∗
= (x∗

1 , x∗

2 , x∗

3 , x∗

4 , x∗

5 ) = (0, 5, 0, 2.5, 0).

We are going to check that this feasible solution x∗ satisfies the optimality conditions (i) and (ii) in Theorem 4.2.
From condition (ii) in Theorem 4.2, we see that λ2 = λ4 = 0 using x∗. Now applying condition (i) to this point x∗,
we obtain

λL(α) · cL
α + λL(α) · cU

α +

2∑
j=1

µ j (α) · a j −

5∑
k=1

λk(α) · ek

=


λL(α) · (−6 + α) + λU (α) · (−3 − 2α) + 2µ1(α) + 3µ2(α) − λ1(α)

λL(α) · (−9 + α) + λU (α) · (−6 − 2α) + 3µ1(α) + 5µ2(α)

λL(α) · (−8 + α) + λU (α) · (−4 − 3α) + 3µ1(α) + 4µ2(α) − λ3(α)

λL(α) · (−5 + α) + λU (α) · (−1 − 3α) + 2µ1(α) + 2µ2(α)

λL(α) · (−7 + α) + λU (α) · (−5 − α) + 2µ1(α) + 4µ2(α) − λ5(α)

 = 0.

After some algebraic calculations, we can obtain the positive real-valued functions

λL(α) = 1 = λU (α)

and the nonnegative real-valued functions

µ1(α) = 2α, µ2(α) = 3 − α and λk(α) = 0 for k = 1, . . . , 5.

Therefore, x∗
= (0, 5, 0, 2.5, 0) is a nondominated type-I solution.

Example 5.2. We are going to apply Theorem 4.4 to solve the same problem in Example 5.1 to obtain the
nondominated type-II solution. It is easy to see that the triangular fuzzy numbers are also canonical fuzzy numbers.
Therefore, the assumption in Theorem 4.4 is satisfied. We want to check that x∗

= (x∗

1 , x∗

2 , x∗

3 , x∗

4 , x∗

5 ) =

(0, 5, 0, 2.5, 0) satisfies the optimality conditions in Theorem 4.4. From condition (ii), we see that λ2 = 0 = λ4.
From (26), we obtain

∫ 1

0
cL
α dα =


−5.5
−8.5
−7.5
−4.5
−6.5

 and
∫ 1

0
cU
α dα =


−4
−7

−5.5
−2.5
−5.5

 .

Applying condition (i) to x∗, we obtain

λL
·

∫ 1

0
cL
α dα + λU

·

∫ 1

0
cU
α dα +

2∑
j=1

µ j · a j −

5∑
k=1

λk · ek

=


−5.5λL

− 4λU
+ 2µ1 + 3µ2 − λ1

−8.5λL
− 7λU

+ 3µ1 + 5µ2

−7.5λL
− 5.5λU

+ 3µ1 + 4µ2 − λ3

−4.5λL
− 2.5λU

+ 2µ1 + 2µ2

−6.5λL
− 5.5λU

+ 2µ1 + 4µ2 − λ5

 = 0.

After some algebraic calculations, we obtain

λL
= 1 = λU , µ1 = 1, µ2 = 2.5 and λk = 0 for k = 1, . . . , 5.

Therefore, Theorem 4.2 says that x∗
= (0, 5, 0, 2.5, 0) is a nondominated type-II solution.
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Example 5.3. Now we consider the following optimization problem with fuzzy constraints:

min
(
−̃4 ⊗ 1̃{x1}

)
⊕

(
−̃3 ⊗ 1̃{x2}

)
⊕

(
−̃6 ⊗ 1̃{x3}

)
subject to

(
3̃ ⊗ 1̃{x1}

)
⊕

(
1̃ ⊗ 1̃{x2}

)
⊕

(
3̃ ⊗ 1̃{x3}

)
⊕ −̃30 � 0̃(

2̃ ⊗ 1̃{x1}

)
⊕

(
2̃ ⊗ 1̃{x2}

)
⊕

(
3̃ ⊗ 1̃{x3}

)
⊕ −̃40 � 0̃

x1, x2, x3 ≥ 0,

where

−̃4 = (−4.4, −4, −3.6), −̃3 = (−3.3, −3, −2.7), −̃6 = (−6.6, −6, −5.4)

1̃ = (0.5, 1, 1.5), 2̃ = (1.5, 2, 2.5), 3̃ = (2.5, 3, 3.5)

−̃30 = (−32, −30, −28), −̃40 = (−42, −40, −38).

We are going to apply Theorem 4.7 to obtain the nondominated type-II solution. Using (25), we obtain

cL
α =

−4.4 + 0.4α

−3.3 + 0.3α

−6.6 + 0.6α

 , cU
α =

−3.6 − 0.4α

−2.7 − 0.3α

−5.4 − 0.6α

 ,

aL
1α =

2.5 + 0.5α

0.5 + 0.5α

2.5 + 0.5α

 , aU
1α =

3.5 − 0.5α

1.5 − 0.5α

3.5 − 0.5α

 , aL
2α =

1.5 + 0.5α

1.5 + 0.5α

2.5 + 0.5α

 and aU
2α =

2.5 − 0.5α

2.5 − 0.5α

3.5 − 0.5α

 .

Now we let

g̃1(x) =

(
3̃ ⊗ 1̃{x1}

)
⊕

(
1̃ ⊗ 1̃{x2}

)
⊕

(
3̃ ⊗ 1̃{x3}

)
⊕ −̃30

g̃2(x) =

(
2̃ ⊗ 1̃{x1}

)
⊕

(
2̃ ⊗ 1̃{x2}

)
⊕

(
3̃ ⊗ 1̃{x3}

)
⊕ −̃40.

Using Proposition 2.1, (25), we obtain

g̃U
1α(x) = (3.5 − 0.5α)x1 + (1.5 − 0.5α)x2 + (3.5 − 0.5α)x3 − 28 − 2α

g̃U
2α(x) = (2.5 − 0.5α)x1 + (2.5 − 0.5α)x2 + (3.5 − 0.5α)x3 − 38 − 2α.

Let us take α∗
= 1 and solve the following system of equations:{

g̃U
11(x) = 3x1 + x2 + 3x3 − 30 = 0

g̃U
21(x) = 2x1 + 2x2 + 3x3 − 40 = 0.

Then we can obtain

x∗
= (x∗

1 , x∗

2 , x∗

3 ) = (0, 10, 20/3).

We are going to check that this feasible solution x∗ satisfies the optimality conditions (iii) and (iv) in Theorem 4.7. It
is easy to see that g̃ jα(x∗) = 0 for α∗

= 1 and j = 1, 2. From condition (iv) in Theorem 4.7, we have λ2 = λ3 = 0
using x∗. Now applying condition (iii) to this point x∗, we need to solve

λL
· cL

1 + λU
· cU

1 +

2∑
j=1

µ j · aU
j1 −

3∑
k=1

λk · ek =

−4λL
− 4λU

+ 3µ1 + 2µ2 − λ1

−3λL
− 3λU

+ µ1 + 2µ2

−6λL
− 6λU

+ 3µ1 + 3µ2

 = 0.

After some algebraic calculations, we can obtain

λL
= 0.5 = λU and µ1 = µ2 = λ1 = 1.

Therefore, x∗
= (0, 10, 20/3) is a nondominated type-II solution.
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