
Power Efficient Processor Architecture and The Cell Processor

H. Peter Hofstee
IBM Server & Technology Group

hofstee@us.ibm.com

Abstract

This paper provides a background and rationale for
some of the architecture and design decisions in the Cell
processor, a processor optimized for compute-intensive
and broadband rich media applications, jointly developed
by Sony Group, Toshiba, and IBM.

1. Introduction

The paper is organized as follows. Section 2 discusses
some of the challenges microprocessor designers face and
provides motivation for performance per transistor as a
reasonable first-order metric for design efficiency.
Section 3 discusses common microarchitectural
enhancements relative to this metric. Section 4 discusses
some alternate architectural choices that improve both
design efficiency and peak processor performance.
Section 5 discusses some of the limitations of the
architectural choices introduced in section 3, and
proposes a non-homogeneous SMP as a means to
overcome these limitations. Section 6 summarizes the
organization of the Cell processor.

2. Performance per transistor as a metric

Microprocessor architects and micro-architects have
over the last couple of decades been driven by two
primary metrics that determine performance: performance
per cycle (often approximated by the number of
instructions completed per processor cycle), and design
frequency (e.g. design cycle time measured in fanout-4
inverter delays). Combined with the capabilities of the
technology (e.g. pico-seconds per fo4) and system
constraints (e.g. sorting conditions, power supply
variation, reference clock jitter, and thermal conditions)
these determine the final operating frequency and
performance of the end product.

Today, architects and micro-architects, as well as logic
and circuit designers, must take power efficiency into
account, since virtually all systems, from mobile
platforms to PCs and workstations to the largest
supercomputers are now power limited. This implies that
we must use power efficiency as one of our primary
metrics for, and driver of, microprocessor designs.

A number of metrics for efficiency have been
proposed, ranging from energy per operation to energy-
delay, to energy-delay2. Each of these metrics balances
processor performance to efficiency, and each of these
metric can be appropriate [1]. For this paper, however, we
examine performance per transistor as a metric. This
metric approximates performance per Watt if one assumes
a constant per-transistor power penalty. This is reasonable
when a high-performance CMOS technology is used and
a constant fraction of the power is lost to sub-threshold
leakage and gate oxide tunneling currents, and when the
intent is to optimize sustained performance when a
significant fraction of the chip is being used.

3. Architectural efficiency

Intel’s Pat Gelsinger has observed that in recent
history we have gained approximately 40% in (design)
performance every time the number of available
transistors was doubled in a next major CMOS
technology node [2]. A corollary is that, on a performance
per transistor metric, microprocessors have become less
efficient at the same rate. We examine some of the major
factors that have driven down performance per transistor.

3.1. Virtual memory and caches

Almost all modern high-performance microprocessors
devote the majority of transistors to caches and other
structures in support of maintaining the illusion of a large,
uniformly accessible, memory. As a rule of thumb cache
miss rates are inversely proportional to the square root of
their size, thus to first order confirming Gelsinger’s law.
The illusion of a flat and uniformly accessible memory is
however increasingly costly to maintain. Latencies to
main memory, in spite of designer’s best efforts range in
the several hundreds of cycles and approach a thousand
cycles in multi-GHz SMP systems. With such a large
penalty associated with a cache miss, managing memory
locality becomes the main factor determining software
performance, and writers of compilers and high-
performance software alike spend much of their time
reverse-engineering and defeating the sophisticated
mechanisms that automatically bring data on to and off
the chip. Given the large number of transistors devoted to
these mechanisms this is an unsatisfactory situation.

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

3.2. Superscalar architectures

The addition of execution units of the same type in

order to leverage instruction level parallelism and
increase IPC is generally inefficient relative to a
performance per transistor metric. As an example, a
second load-store port on a cache tends to double its size
(a two-ported SRAM cell is often more than twice as big
as a single-ported cell), and introduces the need to add
logic to maintain the program order between loads and
stores. Hence often the cost of the associated resources is
more than doubled. In addition, the second load-store
issue slot can be used less often than the first, further
degrading the efficiency.

3.3. Out-of order instruction processing

Out of order processing of instructions, speculative

execution, and register renaming introduce very
significant amounts of overhead to keep track of all the
instructions and their dependencies and ensure that the
computed results are consistent with the in-order
semantics. Floorplans of modern microprocessors show
that the associated structures tend to far exceed the size of
the processor dataflows.

3.4. Hardware branch prediction

 Modern branch prediction structures rely on large
tables to store branch histories and cache branch target
addresses or instructions for incremental increases in
performance and thus tend to degrade performance per
transistor.

3.5. Hyper-pipelining

 Constant penalties associated with unpredictable
changes in instruction flow imply that increasing pipeline
depth as a means to improve design frequency provides
diminishing returns. Recent studies have shown that
increasing pipeline depths beyond their current size in
today’s high-performance microprocessors provides only
a small return in terms of performance and a negative
return if power is taken into account [3], consistent with
the broader thesis of this paper. It should be noted,
however, that pipeline depth and optimal processor
design frequency is a strong function of both the
workload set and the circuit family that is used.
Architectures that are more optimized to their applications
can usefully achieve higher design frequencies than are
shown as optimal by [3]. Also technologies optimized for
sustained performance, with substantial transistor leakage
currents, favor higher design frequencies more strongly
than technologies that are optimized for battery life.

 4. Increasing efficiency and performance

 Section 3 discussed some of the mechanisms that have
led to decreased microprocessor efficiencies. This section
discusses architectural and micro-architectural
mechanisms that improve design efficiency.

4.1. Multi-core processors

 The most obvious way to improve efficiency is to
sacrifice per-thread performance (or per-thread
performance growth) and instead instantiate multiple
cores on a single chip when more transistors become
available. The more threads can be accommodated in the
application set, the more efficient the processors can
become. The approach allows architects to re-introduce
simpler processor micro-architectures (e.g. in-order or
scalar) in order to re-gain efficiency. This approach forces
programmers to multithread their applications, but
because server systems have been organized as SMPs for
a long time, there is good software support for this model.
Many applications scale well on SMP systems and may
scale even better for SMPs on a chip. All major
microprocessor vendors now offer or plan to offer chip
multiprocessors following this model. Even in the face of
a slowdown in transistor performance growth, this path
allows for continued increases in chip performance at
historical rates for at least a decade if accelerated off-chip
bandwidth needs are addressed [4].

4.2. Three-level storage

 RISC microprocessors bring data from main memory
into registers before operating on the data. Register
“memory” is managed by the compiler for conventional
programming languages. We propose that since the best
compilers and the best programmers already manage the
caches in software, it is reasonable to postulate that it may
be easier for programmers and compilers to deliver
power-constrained performance by pre-scheduling
transfers of code and data to local storage than to find
ways of compensating for the thousand cycle penalties
when data or code is not resident in the cache. By
allowing the pre-scheduled data and code transfers to
occur asynchronously, in parallel with computation,
another important limitation of conventional
architectures, known as the “memory wall” can be
addressed. In order to leverage the bandwidth to a main
memory that has a latency of, say, 1K cycles, and transfer
granule of, say, 8 cycles, 128 transfers need to be
pipelined to fully leverage the available bandwidth.
Conventional microprocessors need to use speculative
execution, or speculative prefetching to create more than

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

a single memory transfer per thread with strongly
diminishing returns. Of course increasing the number of
threads on a chip helps, but the more cores are present on
the bus, the longer SMP and protocols take, further
increasing memory latency.
 Performance improvement on structured and compute
intensive codes following the 3-level model is immediate.
New programming paradigms such as streaming
languages are also easily supported. We anticipate that it
will take some time before compilers will mature to
exceed the performance of single-thread conventional
(legacy) programs on conventional architectures, but it
may not take very long before a chip-level (multi-thread)
power-performance advantage is achieved on a broad set
of applications.

4.3. Large unified register files

 In order to support high cycle times (low fo4) and
relatively deep pipelines efficiently, enough registers
need to be available to support the instructions in flight. A
large register file is a more efficient means of achieving
this objective than using register renaming to extend a
smaller architectural register set. An additional advantage
of a large set of named registers is that extensive loop
unrolling (and interleaving) can be supported without the
need for hardware to reorder instructions. Unrolling of
loops and interleaving of loop iterations is well within the
capabilities of modern compilers.
 The cost of a large register file can be further reduced
by leveraging a single register file and single name space
for all instruction types as well as special purpose
registers (condition registers, link, and count registers)
rather than dedicating separate files for scalar, floating-
point and media/SIMD.

4.4. Software branch prediction

 Whereas modern hardware branch prediction structures
do not do well on performance per transistor, software
branch prediction tends to be an inexpensive means to
gain a substantial performance improvement. In order to
support high-frequency deeply pipelined designs
efficiently, a branch hint instruction, present in the code
well before the actual branch instruction allows for “just
in time” prefetching of the instructions at the branch
target. In combination with loop unrolling and
interleaving, compilers can achieve near optimal
performance even on deeply pipelined high-frequency
processors.

4.5. SIMD dataflow organization

 In a SIMD dataflow instruction decode and control
overhead is amortized over multiple instructions in

parallel. A popular SIMD organization in PC processors
is a 128-bit wide dataflow that can be used in a variety of
ways, including 4 wide for 32 bit integer or floating-
point. Even though some compilers can generate SIMD
instructions from generic code, SIMD units are most
commonly and effectively used by using SIMD data-
types explicitly in the source code and restructure
algorithms accordingly.
 Another approach that amortizes control overhead is
(long) vector instructions. This organization is well
known in the science and supercomputing community but
is not as well represented in the software base for media
and personal computing applications.

5. Non-homogeneous SMPs

The previous section outlined some of the approaches
that can be taken to improve performance per transistor in
microprocessors while maintaining a high degree of
programmability. However, the organization is not well
suited for all applications. One shortcoming is the large
state that is introduced with local storage and large
register files. Hence the organization is not particularly
well suited for applications with very frequent context
switches, such as operating systems.

A preferred approach therefore is to combine
processors optimized for performance per transistor on
compute intensive applications, with processors with a
more conventional architecture to run the operating
system and more control intensive applications. Since
operating systems are amongst the most expensive and
extensive software, an organization that does not
unnecessarily forces creating a new OS has substantial
cost and schedule advantages.

6. The Cell processor

The Cell processor incorporates many of the listed
ideas to improve microprocessor efficiency. On the Cell
processor a Power ArchitectureTM core is combined with
Synergistic Processor Elements and associated memory
transfer mechanisms. Memory translation and protection
are consistent with the Power ArchitectureTM. In addition
facilities are added to enhance the real-time behavior of
the processor. The 64-b Power processor supports
multiple operating systems and virtualization. In
particular real-time operating systems (such as an
embedded or game OS) and non-real time OS (such as
Linux) can run simultaneously. The Power processor
virtualization layer (logical partitioning) governs the
allocation of resources, including the SPEs and other
resources to the various OS partitions. Unlike Power

processors, the SPEs operate only on their local memory
(local store or LS). Code and data must be transferred into

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

the associated LS for an SPE to execute or operate on.
Local Store addresses do have an alias in the Power
processor address map and transfers to and from Local
Store to memory at large (including other local stores) are
coherent in the system. As a result a pointer to a data
structure that has been created on the Power processor can
be passed to an SPE and the SPE can use this pointer to
issue a DMA command to bring the data structure into its
local store in order to perform operations on it. If after
operating on this data structure the SPE (or Power core)
issues a DMA command to place it back in non-LS
memory, the transfer is again coherent in the system
according to the normal Power memory ordering rules.
Equivalents of the Power processor locking instructions,
as well as a memory mapped mailbox per SPE, are used
for synchronization and mutual exclusion.

Figure 1 shows the organization of the first-generation
Cell processor [5]. We summarize the highlights. The
processor has an 11fo4 design frequency. The processor
is constructed around a high bandwidth on-chip SMP
fabric capable of supporting up to 96 bytes per processor
cycle total using up to 12 simultaneous transfers.
Connected to this SMP fabric are:

(1) A dual threaded (SMT) 64b Power core. This dual-
issue core has 32kB L1 instruction and data caches, a 512
kB L2 cache, and supports the VMX SIMD instruction
set.

(2) Eight Synergistic Processor Elements, described in
more detail in Figure 2.

(3) An on-chip memory controller. This memory
controller supports high memory bandwidth using two
Rambus XDRAMTM memory banks.

(4) A controller supporting off chip coherent and I/O
interfaces. These interfaces support partitioning of an
aggregate of 7 Bytes outbound and 5 Bytes inbound
Rambus RRAC raw bandwidth in Byte increments over
two external interfaces, on of which can be configured as
a coherent bus. This flexibility supports multiple system
configurations including a glueless two-way SMP.

Each of the listed elements has 8 byte wide (relative to
processor frequency) inbound and outbound interfaces to
the coherent on-chip bus, except the I/O interface unit
which has two 8 byte interfaces.

Figure 2 shows the high-level organization of the SPE.
The SPE processor incorporates many of the
characteristics that allow for it to achieve high frequency
and near optimal CPI in a small area. The SPE uses the
three level model of memory we discussed in section 4.2.
Details of the SPE can be found in [6], we summarize the
highlights. The dual issue SPE consists of an SPU with a
256kB local store memory and an interface unit that
supports up to 16 simultaneous transfers to or from the
local stores. The SPU has a unified 128 bit by 128 entry
register file and a 128-bit wide dataflow that supports

integer and floating-point instructions of various SIMD
widths.

 Power limitations and limitations on main memory
access latency force a re-evaluation of microprocessor
architecture. This paper lists a number of mechanisms that
have significantly degraded efficiency and also discusses
a number of mechanisms to increase efficiency that are
not in use in today’s high performance processors. The
Cell processor incorporates many of these, and combines
power efficiency with a very high design frequency.

Acknowledgements

The Cell processor is the result of a deep collaboration
by engineers from IBM, Sony Computer Entertainment,
Toshiba Corporation, and Sony Corporation. Each
brought unique requirements to the table that helped
shape this microprocessor. Ken Kutaragi should be
credited with presenting the challenge and with insisting
that we explore something beyond the boundaries of the
conventional. Jim Kahle provided the technical leadership
for the project together with Masakazu Suzuoki,
Haruyuki Tago, and Yoshio Masubuchi. Jim also led the
Cell architecture team consisting of Michael Day, Charles
Johns, Dave Shippy, Takeshi Yamazaki, Shigehiro
Asano, Andy Wottreng and myself. Sang Dhong provided
the technical leadership for the SPE processor and drove
its efficiency to reality. The development of the micro-
architecture of the SPE was led by Brian Flachs. Other
key contributors to the SPE are listed on Brian’s paper.
Marty Hopkins (“no great architectural idea has ever gone
unpunished”) did his best to ensure the SPE would be a
good target for a compiler. Michael Gschwind and Peter
Capek also made contributions in this area. Sumedh
Sathaye, J.D. Wellman, and Ravi Nair contributed ideas
that eventually led to the organization of this processor as
a non-homogeneous SMP. Several people from all three
companies provided direction from an application
perspective, of these Nobuo Sasaki, Yukio Watanabe,
Brad Michael and Barry Minor had the greatest impact on
the organization of the SPE. Dac Pham was the chief
engineer driving the design of the Cell processor, and
Mary Many coordinated the design activities. Chekib
Akrout and senior management in the three companies
provided management oversight and created the right
business conditions for this project. With more than 400
engineers and managers making contributions to this
processor it is impossible to acknowledge everyone, but it
should be noted that the level of effort that everyone has
put into the project is what turns a reasonable set of ideas
into a great processor.

Conclusion

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

Figure 1. 1st Generation Cell components.

Figure 2. High-level SPE organization.

References

[1] H. P. Hofstee, “Power-Constrained Microprocessor
Design”, 2002 IEEE International Conference on
Computer Design, Sep. 2002, pp. 14-16.

[2] F. Pollack, “Microarchitecture challenges in the
coming generations of CMOS process technologies,” 32nd
Annual International Symposium on Microarchitecture,
(MICRO-32) Nov. 1999, pp. 2-.

[3] H. P. Hofstee, “Future Microprocessors and Off-Chip
SOP Interconnect,” IEEE Transactions on Advanced
Packaging, Vol. 27, No. 2, May 2004, pp.301-303.

[4] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose,
V.Zyuban, P.N. Strenski, and P.G. Emma “Optimizing
pipelines for power and performance,” in Conf. Proc. 35th
Annual IEEE/ACM International Symposium on
Microarchitecture 2002. pp. 333-344.

[5] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P.
Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y.
Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,
M. Wang, J. Warnock, S. Weitzel, D. Wendel, T.
Yamazaki, K. Yazawa, “The Design and Implementation
of a First-Generation CELL Processor,” to appear: IEEE
International Solid-State Circuits Symposium, Feb. 2005.

[6] B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee. G.
Gervais, R. Kim, T. Le, P. Liu, J. Leenstra, J. Liberty, B.
Michael, H-J. Oh, S. M. Mueller, O. Takahashi, A.
Hatakeyama, Y. Watanabe, N. Yano. “The
Microarchitecture of the Streaming Processor for a CELL
Processor,” to appear: IEEE International Solid-State
Circuits Symposium, Feb. 2005.

Coherent On-Chip Bus 96B/cycle

BIU

L2

64b
Power

Architecture
Core

Mem.
Contr.

Interface
Contr.

BIU/
DMA

SPU

BIU/
DMA

SPU

BIU/
DMA

SPU

BIU/
DMA

SPU

BIU/
DMA

SPU

BIU/
DMA

SPU

BIU/
DMA

SPU

BIU/
DMA

SPU

Unified
Reg.file

SIMD
Data-
flow

Local
Store Memory

DMA
Unit

MMU
&

BIU

Proceedings of the 11th Int’l Symposium on High-Performance Computer Architecture (HPCA-11 2005)
1530-0897/05 $20.00 © 2005 IEEE

