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Abstract 
 

This paper provides a background and rationale for 
some of the architecture and design decisions in the Cell 
processor, a processor optimized for compute-intensive 
and broadband rich media applications, jointly developed 
by Sony Group, Toshiba, and IBM. 
 
 
1. Introduction 
 

The paper is organized as follows. Section 2 discusses 
some of the challenges microprocessor designers face and 
provides motivation for performance per transistor as a 
reasonable first-order metric for design efficiency. 
Section 3 discusses common microarchitectural 
enhancements relative to this metric. Section 4 discusses 
some alternate architectural choices that improve both 
design efficiency and peak processor performance. 
Section 5 discusses some of the limitations of the 
architectural choices introduced in section 3, and 
proposes a non-homogeneous SMP as a means to 
overcome these limitations. Section 6 summarizes the 
organization of the Cell processor.  
 
2. Performance per transistor as a metric 
 

Microprocessor architects and micro-architects have 
over the last couple of decades been driven by two 
primary metrics that determine performance: performance 
per cycle (often approximated by the number of 
instructions completed per processor cycle), and design 
frequency (e.g. design cycle time measured in fanout-4 
inverter delays). Combined with the capabilities of the 
technology (e.g. pico-seconds per fo4) and system 
constraints (e.g. sorting conditions, power supply 
variation, reference clock jitter, and thermal conditions) 
these determine the final operating frequency and 
performance of the end product. 

Today, architects and micro-architects, as well as logic 
and circuit designers, must take power efficiency into 
account, since virtually all systems, from mobile 
platforms to PCs and workstations to the largest 
supercomputers are now power limited. This implies that 
we must use power efficiency as one of our primary 
metrics for, and driver of, microprocessor designs. 

A number of metrics for efficiency have been 
proposed, ranging from energy per operation to energy-
delay, to energy-delay2.  Each of these metrics balances 
processor performance to efficiency, and each of these 
metric can be appropriate [1]. For this paper, however, we 
examine performance per transistor as a metric. This 
metric approximates performance per Watt if one assumes 
a constant per-transistor power penalty. This is reasonable 
when a high-performance CMOS technology is used and 
a constant fraction of the power is lost to sub-threshold 
leakage and gate oxide tunneling currents, and when the 
intent is to optimize sustained performance when a 
significant fraction of the chip is being used. 

 
3. Architectural efficiency 
 

Intel’s Pat Gelsinger has observed that in recent 
history we have gained approximately 40% in (design) 
performance every time the number of available 
transistors was doubled in a next major CMOS 
technology node [2]. A corollary is that, on a performance 
per transistor metric, microprocessors have become less 
efficient at the same rate. We examine some of the major 
factors that have driven down performance per transistor. 
 
3.1. Virtual memory and caches 
 

Almost all modern high-performance microprocessors 
devote the majority of transistors to caches and other 
structures in support of maintaining the illusion of a large, 
uniformly accessible, memory. As a rule of thumb cache 
miss rates are inversely proportional to the square root of 
their size, thus to first order confirming Gelsinger’s law. 
The illusion of a flat and uniformly accessible memory is 
however increasingly costly to maintain. Latencies to 
main memory, in spite of designer’s best efforts range in 
the several hundreds of cycles and approach a thousand 
cycles in multi-GHz SMP systems. With such a large 
penalty associated with a cache miss, managing memory 
locality becomes the main factor determining software 
performance, and writers of compilers and high-
performance software alike spend much of their time 
reverse-engineering and defeating the sophisticated 
mechanisms that automatically bring data on to and off 
the chip. Given the large number of transistors devoted to 
these mechanisms this is an unsatisfactory situation. 
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3.2. Superscalar architectures 
 
The addition of execution units of the same type in 

order to leverage instruction level parallelism and 
increase IPC is generally inefficient relative to a 
performance per transistor metric. As an example, a 
second load-store port on a cache tends to double its size 
(a two-ported SRAM cell is often more than twice as big 
as a single-ported cell), and introduces the need to add 
logic to maintain the program order between loads and 
stores. Hence often the cost of the associated resources is 
more than doubled. In addition, the second load-store 
issue slot can be used less often than the first, further 
degrading the efficiency. 

 
3.3. Out-of order instruction processing 

 
Out of order processing of instructions, speculative 

execution, and register renaming introduce very 
significant amounts of overhead to keep track of all the 
instructions and their dependencies and ensure that the 
computed results are consistent with the in-order 
semantics. Floorplans of modern microprocessors show 
that the associated structures tend to far exceed the size of 
the processor dataflows. 
 
3.4. Hardware branch prediction 
 
    Modern branch prediction structures rely on large 
tables to store branch histories and cache branch target 
addresses or instructions for incremental increases in 
performance and thus tend to degrade performance per 
transistor. 
 
3.5. Hyper-pipelining 
 
    Constant penalties associated with unpredictable 
changes in instruction flow imply that increasing pipeline 
depth as a means to improve design frequency provides 
diminishing returns. Recent studies have shown that 
increasing pipeline depths beyond their current size in 
today’s high-performance microprocessors provides only 
a small return in terms of performance and a negative 
return if power is taken into account [3], consistent with 
the broader thesis of this paper. It should be noted, 
however, that pipeline depth and optimal processor 
design frequency is a strong function of both the 
workload set and the circuit family that is used. 
Architectures that are more optimized to their applications 
can usefully achieve higher design frequencies than are 
shown as optimal by [3]. Also technologies optimized for 
sustained performance, with substantial transistor leakage 
currents, favor higher design frequencies more strongly 
than technologies that are optimized for battery life. 

 4. Increasing efficiency and performance 

 
    Section 3 discussed some of the mechanisms that have 
led to decreased microprocessor efficiencies. This section 
discusses architectural and micro-architectural 
mechanisms that improve design efficiency. 
 
4.1. Multi-core processors 
 
    The most obvious way to improve efficiency is to 
sacrifice per-thread performance (or per-thread 
performance growth) and instead instantiate multiple 
cores on a single chip when more transistors become 
available. The more threads can be accommodated in the 
application set, the more efficient the processors can 
become. The approach allows architects to re-introduce 
simpler processor micro-architectures (e.g. in-order or 
scalar) in order to re-gain efficiency. This approach forces 
programmers to multithread their applications, but 
because server systems have been organized as SMPs for 
a long time, there is good software support for this model. 
Many applications scale well on SMP systems and may 
scale even better for SMPs on a chip. All major 
microprocessor vendors now offer or plan to offer chip 
multiprocessors following this model. Even in the face of 
a slowdown in transistor performance growth, this path 
allows for continued increases in chip performance at 
historical rates for at least a decade if accelerated off-chip 
bandwidth needs are addressed [4]. 
 
4.2. Three-level storage 
 
    RISC microprocessors bring data from main memory 
into registers before operating on the data. Register 
“memory” is managed by the compiler for conventional 
programming languages. We propose that since the best 
compilers and the best programmers already manage the 
caches in software, it is reasonable to postulate that it may 
be easier for programmers and compilers to deliver 
power-constrained performance by pre-scheduling 
transfers of code and data to local storage than to find 
ways of compensating for the thousand cycle penalties 
when data or code is not resident in the cache. By 
allowing the pre-scheduled data and code transfers to 
occur asynchronously, in parallel with computation, 
another important limitation of conventional 
architectures, known as the “memory wall” can be 
addressed. In order to leverage the bandwidth to a main 
memory that has a latency of, say, 1K cycles, and transfer 
granule of, say, 8 cycles, 128 transfers need to be 
pipelined to fully leverage the available bandwidth. 
Conventional microprocessors need to use speculative 
execution, or speculative prefetching to create more than 
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a single memory transfer per thread with strongly 
diminishing returns. Of course increasing the number of 
threads on a chip helps, but the more cores are present on 
the bus, the longer SMP and protocols take, further 
increasing memory latency.  
      Performance improvement on structured and compute 
intensive codes following the 3-level model is immediate. 
New programming paradigms such as streaming 
languages are also easily supported. We anticipate that it 
will take some time before compilers will mature to 
exceed the performance of single-thread conventional 
(legacy) programs on conventional architectures, but it 
may not take very long before a chip-level (multi-thread) 
power-performance advantage is achieved on a broad set 
of applications.  
 
4.3. Large unified register files 
 
    In order to support high cycle times (low fo4) and 
relatively deep pipelines efficiently, enough registers 
need to be available to support the instructions in flight. A 
large register file is a more efficient means of achieving 
this objective than using register renaming to extend a 
smaller architectural register set. An additional advantage 
of a large set of named registers is that extensive loop 
unrolling (and interleaving) can be supported without the 
need for hardware to reorder instructions. Unrolling of 
loops and interleaving of loop iterations is well within the 
capabilities of modern compilers. 
    The cost of a large register file can be further reduced 
by leveraging a single register file and single name space 
for all instruction types as well as special purpose 
registers (condition registers, link, and count registers) 
rather than dedicating separate files for scalar, floating-
point and media/SIMD. 
 
4.4. Software branch prediction 
 
    Whereas modern hardware branch prediction structures 
do not do well on performance per transistor, software 
branch prediction tends to be an inexpensive means to 
gain a substantial performance improvement. In order to 
support high-frequency deeply pipelined designs 
efficiently, a branch hint instruction, present in the code 
well before the actual branch instruction allows for “just 
in time” prefetching of the instructions at the branch 
target. In combination with loop unrolling and 
interleaving, compilers can achieve near optimal 
performance even on deeply pipelined high-frequency 
processors. 
 
4.5. SIMD dataflow organization 
 
    In a SIMD dataflow instruction decode and control 
overhead is amortized over multiple instructions in 

parallel. A popular SIMD organization in PC processors 
is a 128-bit wide dataflow that can be used in a variety of 
ways, including 4 wide for 32 bit integer or floating-
point. Even though some compilers can generate SIMD 
instructions from generic code, SIMD units are most 
commonly and effectively used by using SIMD data-
types explicitly in the source code and restructure 
algorithms accordingly. 
      Another approach that amortizes control overhead is 
(long) vector instructions. This organization is well 
known in the science and supercomputing community but 
is not as well represented in the software base for media 
and personal computing applications. 
 
5. Non-homogeneous SMPs 
 

The previous section outlined some of the approaches 
that can be taken to improve performance per transistor in 
microprocessors while maintaining a high degree of 
programmability. However, the organization is not well 
suited for all applications. One shortcoming is the large 
state that is introduced with local storage and large 
register files. Hence the organization is not particularly 
well suited for applications with very frequent context 
switches, such as operating systems. 

A preferred approach therefore is to combine 
processors optimized for performance per transistor on 
compute intensive applications, with processors with a 
more conventional architecture to run the operating 
system and more control intensive applications.  Since 
operating systems are amongst the most expensive and 
extensive software, an organization that does not 
unnecessarily forces creating a new OS has substantial 
cost and schedule advantages. 
 
6. The Cell processor 
 

The Cell processor incorporates many of the listed 
ideas to improve microprocessor efficiency. On the Cell 
processor a Power ArchitectureTM core is combined with 
Synergistic Processor Elements and associated memory 
transfer mechanisms. Memory translation and protection 
are consistent with the Power ArchitectureTM. In addition 
facilities are added to enhance the real-time behavior of 
the processor. The 64-b Power processor supports 
multiple operating systems and virtualization. In 
particular real-time operating systems (such as an 
embedded or game OS) and non-real time OS (such as 
Linux) can run simultaneously. The Power processor 
virtualization layer (logical partitioning) governs the 
allocation of resources, including the SPEs and other 
resources to the various OS partitions. Unlike Power 

processors, the SPEs operate only on their local memory 
(local store or LS). Code and data must be transferred into 
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the associated LS for an SPE to execute or operate on. 
Local Store addresses do have an alias in the Power 
processor address map and transfers to and from Local 
Store to memory at large (including other local stores) are 
coherent in the system. As a result a pointer to a data 
structure that has been created on the Power processor can 
be passed to an SPE and the SPE can use this pointer to 
issue a DMA command to bring the data structure into its 
local store in order to perform operations on it. If after 
operating on this data structure the SPE (or Power core) 
issues a DMA command to place it back in non-LS 
memory, the transfer is again coherent in the system 
according to the normal Power memory ordering rules. 
Equivalents of the Power processor locking instructions, 
as well as a memory mapped mailbox per SPE, are used 
for synchronization and mutual exclusion. 

Figure 1 shows the organization of the first-generation 
Cell processor [5]. We summarize the highlights. The 
processor has an 11fo4 design frequency. The processor 
is constructed around a high bandwidth on-chip SMP 
fabric capable of supporting up to 96 bytes per processor 
cycle total using up to 12 simultaneous transfers. 
Connected to this SMP fabric are: 

(1) A dual threaded (SMT) 64b Power core. This dual-
issue core has 32kB L1 instruction and data caches, a 512 
kB L2 cache, and supports the VMX SIMD instruction 
set. 

(2) Eight Synergistic Processor Elements, described in 
more detail in Figure 2. 

(3) An on-chip memory controller. This memory 
controller supports high memory bandwidth using two 
Rambus XDRAMTM memory banks. 

(4) A controller supporting off chip coherent and I/O 
interfaces. These interfaces support partitioning of an 
aggregate of 7 Bytes outbound and 5 Bytes inbound 
Rambus RRAC raw bandwidth in Byte increments over 
two external interfaces, on of which can be configured as 
a coherent bus. This flexibility supports multiple system 
configurations including a glueless two-way SMP. 

Each of the listed elements has 8 byte wide (relative to 
processor frequency) inbound and outbound interfaces to 
the coherent on-chip bus, except the I/O interface unit 
which has two 8 byte interfaces. 

Figure 2 shows the high-level organization of the SPE. 
The SPE processor incorporates many of the 
characteristics that allow for it to achieve high frequency 
and near optimal CPI in a small area. The SPE uses the 
three level model of memory we discussed in section 4.2. 
Details of the SPE can be found in [6], we summarize the 
highlights. The dual issue SPE consists of an SPU with a 
256kB local store memory and an interface unit that 
supports up to 16 simultaneous transfers to or from the 
local stores. The SPU has a unified 128 bit by 128 entry 
register file and a 128-bit wide dataflow that supports 

integer and floating-point instructions of various SIMD 
widths.  

 
    Power limitations and limitations on main memory 
access latency force a re-evaluation of microprocessor 
architecture. This paper lists a number of mechanisms that 
have significantly degraded efficiency and also discusses 
a number of mechanisms to increase efficiency that are 
not in use in today’s high performance processors. The 
Cell processor incorporates many of these, and combines 
power efficiency with a very high design frequency. 
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Figure 1. 1st Generation Cell components. 
 
 

 
 
Figure 2. High-level SPE organization. 
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