
Security vulnerabilities in DNS and DNSSEC

Suranjith Ariyapperuma and Chris J. Mitchell
Information Security Group

Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

Email: suranjith.ariyapperuma@anglia.ac.uk, c.mitchell@rhul.ac.uk

Abstract

We present an analysis of security vulnerabilities in
the Domain Name System (DNS) and the DNS Secu-
rity Extensions (DNSSEC). DNS data that is provided
by name servers lacks support for data origin authen-
tication and data integrity. This makes DNS vulnera-
ble to man in the middle (MITM) attacks, as well as
a range of other attacks. To make DNS more robust,
DNSSEC was proposed by the Internet Engineering Task
Force (IETF). DNSSEC provides data origin authentica-
tion and integrity by using digital signatures. Although
DNSSEC provides security for DNS data, it suffers from
serious security and operational flaws. We discuss the
DNS and DNSSEC architectures, and consider the asso-
ciated security vulnerabilities.

Keywords: DNS, DNSSEC, Cryptography, Security.

1 Introduction

DNS [22, 24] is the standard mechanism for name to
IP address resolution. For practical security and avail-
ability reasons it is important that DNS is able to tolerate
failures and attacks. This is evident from recent phish-
ing attacks [16] that have used DNS cache poisoning to
steal sensitive financial data [21].

To solve the known security problems with DNS, a
set of security extensions (DNSSEC) [5] have been pro-
posed. DNSSEC provides data integrity and origin au-
thentication using pre-generated digital signatures for
each data item stored in the DNS database. However,
as we show in this paper, DNSSEC introduces new se-
curity issues such as chain of trust problems, timing and
synchronisation attacks, Denial of Service amplification,
increased computational load, and a range of key man-
agement issues.

2 DNS Infrastructure

DNS translates domain names to IP addresses, and
vice versa. DNS is implemented as a globally distributed
database supporting a hierarchical structure. A client en-
tity known as a Resolver acts on behalf of a client by
submitting queries to, and receiving responses from, the
DNS server. The responses contain Resource Records
(RRs) containing the desired name/address resolution
information. The availability and performance of DNS
is enhanced through a replication and caching mecha-
nism. A detailed description of the operation of DNS
can be found in many books (see, for example, [23]).

The DNS name space is organised hierarchically. A
domain is a subtree of the name space. The top-level
domains (TLDs) are those immediately below the root.
A domain is broken into smaller units called zones.

2.1 Name Servers and Resolvers

Name servers generally maintain complete
name/address information about a particular zone
in a file known as the zone file. Every zone needs
to provide a primary and a secondary name server to
enhance resiliency, Redundancy and Load Balancing.
Primary master servers maintain the zone data in a
locally stored zone file. All changes to zone data must
take place at the database of the primary server. A
secondary server periodically queries the master server
for a copy of the database updates, and uses the returned
information to update its own database. This is called
zone transfer. The primary protocol used for DNS
communications is UDP. However, TCP is used to
provide zone transfers. Name servers listen on UDP and
TCP port 53 for DNS queries.

In the absence of any other information, DNS query
resolution must start with a query to the root name



servers, which means that the root servers are very busy.
Caching is used extensively by all name servers to re-
duce the load on the root servers.

2.2 DNS Query Resolution

A name server can operate in two modes, recursive
or iterative. A recursive query is sent with the RD (Re-
cursion Desired) flag set to on in the DNS query header.
In recursive mode the name server searches through the
DNS hierarchy in response to queries and returns either
an error or the answer, but never referrals to other name
servers.

For iterative queries, the queried name server operat-
ing in iterative mode consults its own database for the
requested data. If it cannot find the answer, it typically
gives the IP address of the closest name server that might
know the result. The client repeats the request, this time
sending it to the server it just learned about. By default,
queries to root name servers are iterative.

2.3 DNS Protocol Format

Figure 1 shows the format of DNS query and reply
messages [18, 19]. We discuss the relevant fields below.

Figure 1. DNS Protocol Format

2.4 Resource Records

Resource Records (RRs), as stored in name server
zone files, have the format shown in Figure 2

Figure 2. Resource Record Format

The domain name is a pointer to the RR. The Time
To Live (TTL) is the length of time that a cached RR
may be considered to be valid. Class is the type of the
network; RRs typically belong to the IN (Internet) class.
The most commonly used values for the Type field [19]
are listed in Table 1.

Table 1. Resource Record Format
Type Description
SOA Start of Authority
NS Name Server Record
A Address Record (IP)

PTR Pointer Record
MX Mail Exchanger Record

CNAME Canonical Name (Alias)

RDLength specifies the length of the RDATA field.
Finally, RDATA describes the resource using the format
specified by the type and class. An RRSet is a set of
zero or more RRs [30], all of which have the same DNS
name, class, and type.

3 DNS Vulnerabilities

We now briefly review some of the most important
attacks on DNS. Most of these problems have been pre-
viously documented (see, for example, [6]).

3.1 Man in the middle (MITM) attacks

The recipient of data from a DNS name server has no
way of authenticating its origin or verifying its integrity.
This is because DNS does not specify a mechanism for
servers to provide authentication details for the data they
push down to clients. A resolver has no way to verify
the authenticity and integrity of the data sent by name
servers.



The Resolver can only authenticate the origin of a
DNS reply data packet using the source IP address of
the DNS server, destination and source port numbers and
DNS transaction ID. An attacker can easily craft a DNS
server response packet to match these parameters. The
client has no choice but to trust as reliable the data pro-
vided by an attacker. An attacker can resolve legitimate
queries, responding with false information.

3.1.1 Packet Sniffing

DNS sends an entire query or response in a single un-
signed, unencrypted UDP packet, which makes it easy
to tamper with. By capturing DNS query packets, a
wrong answer can be generated fast enough to reach the
resolver before the correct answer from the name server.
Compromising a router on a transit network allows an
attacker to capture the DNS Reply packet from the name
server and modify it. As no source authentication or data
integrity checks are supported, this will not be detected
by the resolver.

3.1.2 Transaction ID Guessing

An attacker can respond with false answers to a pre-
dicted query, without having to be on the LAN to in-
tercept packets. These answers will be cached either by
the resolver or by the caching name server. The DNS
Transaction ID field is only a 16-bit field, and the server
UDP port associated with DNS is 53. On the client there
are only 232 possible combinations of ID (216) and client
UDP ports (216) for a given client and server. In prac-
tice the client UDP port and the Transaction ID can be
predicted from previous queries. It is common for the
client port to be a known fixed value due to firewall re-
strictions, or the port number will increase incrementally
due to resolver library behaviour. The DNS transaction
ID generated by a client usually increases incrementally.
This reduces the search space to a range smaller than 216

[6].
By itself, ID guessing is not enough to allow an at-

tacker to inject bogus data. This has to be combined
with knowledge or guesses about Queries (QNAME)
and Query type (QTYPE) for which a resolver might be
querying. This can, for example, be achieved by cache
snooping [13].

3.2 Caching Problems

Through the use of caches, the DNS sacrifices con-
sistency in favour of reduced access time. DNS caching
raises concerns about cache inconsistency and staleness

of data. Stale information may include security critical
information, e.g. a compromised key. The current DNS
protocol does not support any means to propagate data
updates or invalidations to DNS servers or caches in a
fast and secure way.

3.2.1 Cache Poisoning using Name Chaining

This attack introduces false information into DNS
caches. This is achieved by means of DNS RRs whose
RDATA portion includes a DNS name which can be used
as a hook to let an attacker feed bad data into a victim’s
cache. The most affected types of RRs are CNAME, NS,
and DNAME RRs.

False data, associated with these names, can be in-
jected into the victim’s cache via the Additional section
of the response. An Attacker can introduce arbitrary
DNS names of the attacker’s choosing, and provide fur-
ther information that is claimed to be associated with
those names [6].

3.2.2 Cache Poisoning using Transaction ID Predic-
tion

In this attack, a large number of resolution requests
are sent to the victim server (ns1.victim.com, say)
with spoofed source IP addresses to resolve a name,
say www.mybank.com. Each request will be assigned
a unique transaction ID and processed independently.
Since ns1.victim.com is trying to resolve each of these
requests, the server will be awaiting a large number of
replies from ns1.mybank.com.

The attacker uses this wait stage to bom-
bard ns1.victim.com with spoofed replies from
ns1.mybank.com, stating that www.mybank.com points
to an IP address which is under the attacker’s control.
Each spoofed reply has a different transaction ID, a
source port and the spoofed DNS server IP address
(for ns1.mybank.com). The attacker hopes to guess
the correct transaction ID and source port used by the
querying name server. Once the attack is successful,
false information will be stored in ns1.victim.com’s
cache [26].

3.3 DDoS attacks

DDoS attacks can have a significant impact on the
global DNS database and its users. They are usually
directed at root servers. This was evident with the re-
cent DDoS attack in June 2004 [28], which was a repeat
of a similar attack in October 2002 [20]. These attacks



caused a loss of availability of name resolution services
to the Internet community.

3.4 Other significant DNS attacks

3.4.1 Information Leakage

A successful zone transfer by an attacker would serve
as a reconnaissance attack, potentially revealing sensi-
tive information about internal network configuration,
e.g. the IP addresses of Internal firewall interfaces. DNS
names could, for example, represent project names that
may be of interest to an attacker, or could reveal the
identity of the operating system running on the machine.

3.4.2 DNS Dynamic Update Vulnerabilities

Protocols such as Dynamic Host Configuration Protocol
(DHCP) make use of the DNS Dynamic Update proto-
col to add and delete RRs on demand. These updates
take place on the primary server of the zone [30]. The
authentication for such updates is based solely on source
IP address, and is vulnerable to threats such as IP spoof-
ing. These attacks can range from denial of service, in-
cluding deletion of records, to redirection [1].

3.5 BIND Security Considerations

DNS servers across the Internet using the BIND im-
plementation of DNS software are not always up to date
with security patches and software updates. As a result,
at any one time a significant fraction of the Internet’s
DNS servers are vulnerable to compromise [27]. The
majority of these vulnerabilities are a result of poor ex-
ception handling and boundary checking. Exploitation
will potentially allow attackers to execute arbitrary code
or write data to arbitrary locations in memory [11].

3.6 Usage vulnerabilities

The use of DNS triggers conditions similar to DDoS
attacks. The DNS query rate at the root servers has risen
from 1 query per second to roughly 100000 queries per
second in 2004 [17, 25]. Measurements at root servers
show an astounding number of bogus queries: from 60-
85 % of observed queries were repeated from the same
host within the measurement interval. Over 14 % of a
root server’s query load is due to queries that violate the
DNS specification [8].

Root servers receive a large number of queries be-
cause the resolvers never receive the replies, because of

either packet filters or routing issues [32]. Improper us-
age or improper coding of the client resolvers can cause
a DDoS effect on DNS root servers.

4 Domain Name System Security Exten-
sions (DNSSEC)

DNSSEC adds security to the DNS protocol by pro-
viding origin authentication, data integrity and authen-
ticated denial of existence to DNS data provided by a
name server. All answers from DNSSEC servers are dig-
itally signed. By checking the signature, a DNSSEC re-
solver is able to check if the information originated from
a legitimate server and that data is identical to the data
on the authoritative DNS server. If the data is not present
on the server an authenticated denial is produced.

To maintain backward compatibility with DNS,
DNSSEC requires only minor changes to the DNS pro-
tocol. DNSSEC adds four record types to DNS, namely
Resource Record Signature (RRSIG), DNS Public Key
(DNSKEY), Delegation Signer (DS), and Next Secure
(NSEC). DNSSEC uses two of the previously unused
flag bits in the DNS query and answer message header
(AD and CD). The AD (Authentic Data) bit in a re-
sponse indicates that all the data included in the answer
and authority portion of the response has been authen-
ticated by the server. The CD (checking disabled) bit
indicates that unauthenticated data is acceptable to the
resolver sending the query [5]. Because the UDP proto-
col has a packet size limit of 512 bits, DNSSEC requires
the use of EDNS0 [29] extensions that override this lim-
itation, so that larger key sizes can be accommodated
[10].

DNSSEC adds the ability to detect MITM attacks on
DNS through the addition of data origin authentication,
transaction and request authentications, but DNSSEC
does not prevent such attacks. To maintain data ori-
gin authenticity and integrity, both servers and resolvers
must use the DNSSEC protocol.

4.1 Keys in DNSSEC

Each secured zone has a key pair, made up of a zone
private key and the corresponding public key. The zone
public key is stored as a resource record (type KEY) in
the secured zone. The public key is used by DNS servers
and Resolvers to verify the zone’s digital signature.

All resource records in a secured zone are signed by
the zone’s private key. To make zone re-signing and key
roll-overs easier to implement, it is possible to use one
or more keys as Key Signing Keys (KSKs). A KSK



will only be used to sign the top level KEY RRs in a
zone. Zone Signing Keys (ZSKs) are used to sign all the
RRsets in a zone.

4.2 Signatures in DNSSEC

DNSSEC provides an unforgeable authentication of a
RRset by associating it with a signature resource record
that binds DNS data to a time interval and the signer’s
domain name.

A private key is used to sign a RRset. For increased
speed a hash of the RRset is signed. This provides au-
thenticated data origin. If data is modified during trans-
port the signature is no longer valid (authenticated data
integrity). In DNSSEC, only signatures are used, and
nothing is encrypted.

Hashes are generated using MD5 or SHA-1. Signa-
tures are created using MD5/RSA [4], DSA [3] or el-
liptic curve cryptographic algorithms. Signatures are
stored as resource records (type RRSIG) and are used
with the zone’s public key to authenticate resource
records.

4.3 NSEC Records

Each unique name in a secured zone is also assigned
a corresponding NSEC resource record, which points
to the next name present in the zone. The sequen-
tial chain of NSEC resource records for a zone defines
what resource records actually exist in that zone. The
NSEC resource records are also signed by the zone
private key, preventing the zone from being compro-
mised through unauthorised addition or deletion of zone
resource records. NSEC resource records for a zone
are automatically generated when the zone records are
signed.

4.3.1 Time in DNSSEC

All times in DNS are relative. The Start Of Author-
ity (SOA) resource record’s refresh, retry and expiration
timers are counters that are used to determine the time
elapsed since a slave server synchronised with a master
server. The Time to Live (TTL) value is used to deter-
mine how long a forwarder should cache data after it has
been fetched from an authoritative server. DNSSEC in-
troduces absolute time into DNS.

The signature validity period is the period that a sig-
nature is valid. It starts at the time specified in the sig-
nature inception field of the RRSIG and ends at the time
specified in the expiration field. The signature publica-
tion period is the time after which a signature is replaced

with a new signature by publishing the relevant RRSIG
in the master zone file.

5 DNSSEC Vulnerabilities

DNSSEC does not guard against poor configuration
or bad information in the authoritative name server, and
does not protect against buffer overruns or DDoS at-
tacks. A large increase in the computational load on
the servers and resolvers, a hierarchical model of trust,
the lack of management tools, and the need for a higher
level of time synchronisation between the servers, re-
main some of the most significant obstacles to its de-
ployment.

Cryptographic key management issues, such as ini-
tial key configuration and key rollover, key authentica-
tion and verification have yet to be resolved at an oper-
ational level in order to enable DNSSEC to be deployed
on a global scale. Storage of the zone private key is also
an issue, and DNSSEC cannot tolerate malicious server
failures. Finally as SECREG [12] test bed experience
suggests, DNSSEC is complex to implement.

5.1 The Chain of Trust

DNSSEC has a hierarchical trust model. To securely
resolve a name in DNSSEC, a root public key must be
available at the resolver. Public keys themselves are au-
thenticated either by being statically configured into a
DNS server or resolver, or by being signed by a parent
zone’s private key.

The chain of trust works by following secured del-
egation pointers called Delegation Signers (DSs). The
DS record delegates trust from a parental key to a child’s
zone key. The DS record holds a SHA-1 hash of a child’s
zone public key, and this hash is signed with the zone
private key of the parent. By checking the signature of
the DS record, a resolver can validate the hash of the
child’s zone public key, and can in turn establish the va-
lidity of the child’s public key.

A root public key injection attack at the client end, as
described in [9], would compromise this chain of trust.
Any compromise in any of the zones between the root
and a particular target name will result in data being
marked as bogus, which may cause entire sub-domains
to become invisible to verifying clients.

Data published on an authoritative primary server
will not be seen immediately by verifying clients; it may
take some time for the data to be transferred to other
secondary authoritative name-servers. During this pe-
riod, clients may be fetching data from caching non-



authoritative servers. For the verifying clients it is im-
portant that data from secured zones can be used to build
chains of trust regardless of whether the data came di-
rectly from an authoritative server or a caching name-
server [12].

5.2 Security Considerations for keys

The key size, algorithm and validity period should be
chosen with care. The Key validity period [2] affects a
number of issues with respect to the generation, lifetime,
size and storage of private keys. When choosing key
sizes, zone administrators need to take into account the
key validity period and how much data will be signed
during that period.

5.2.1 Key Rollovers

The longer a key is in use, the greater the probability that
it will have been compromised through carelessness, ac-
cident, espionage, or cryptanalysis [2].

During the key rollover, data published about the pre-
vious versions of the zone still live in caches. Ignoring
previously cached data will lead to loss of service for
clients, especially when zone material signed with an
old key is being validated by a resolver which does not
have the old zone key cached. If the old key is no longer
present in the current zone, this validation fails, marking
the data bogus. Alternatively, an attempt could be made
to validate data which is signed with a new key against
an old key that lives in a local cache, also resulting in
data being marked bogus.

Key rollover at the root is difficult to achieve as it af-
fects the whole hierarchical database. Work needs to be
done to adequately specify how the root key rolls over.

5.2.2 Zone Private Key Storage

DNSSEC recommends that the zone private key should
be stored offline. This creates issues with providing sup-
port for dynamic updates, as the zone private key cannot
be used to generate signatures (RRSIG) in real-time to
authenticate dynamically updated data. This makes dy-
namically updated data in DNSSEC either unavailable
or unprotected before the next zone signing using the
zone private key takes place.

A security breach of the server that stores the zone
private key gives an intruder full access to the zone. To
ensure full security, the zone private key should never be
present in the server memory.

5.2.3 DNSSEC Timing issues

DNSSEC creates a requirement for loose time synchro-
nisation between the resolver and the host creating the
DNSSEC signatures. A resolver must have the same
concept of absolute time in order to determine whether
the signature is valid or expired. An attacker that can
change a resolver’s opinion of the current absolute time
can fool the resolver into using expired signatures. An
attacker that can change the zone signer’s opinion of the
current absolute time can fool the zone signer into gen-
erating signatures whose validity period does not match
what the signer intended.

Signatures (RRSIG) are not generated on a per query
basis, but are instead occasionally generated with a high
TTL, as signing is a resource expensive process. This
opens a broad window for a freshness attack, where stale
data whose corresponding signature has not expired is
replayed to misdirect the client.

SIG RRs are valid from a pre-set signature inception
time to a signature expiration time. This interval tends
to be long. The original TTL value of the RR is also in-
cluded and protected by the signature. The correspond-
ing RR is valid until the signature expiration time or the
TTL expiration time, whichever comes first. Even if an
RR is updated, the actual update remains ineffective un-
til the signature or the TTL expiration time. DNSSEC
requires at least some time synchronisation between the
primary and secondary name servers.

5.2.4 Wildcard Proof Mechanism

A wildcard (*), used in the name field of a RR, allows
one record to stand in for a number of other records (of
the same type, pointing to the same data, in the same
zone). Wildcard names are patterns for synthesising RRs
on the fly, according to the matching rules [18]. Wild-
card MX RRs are used heavily.

The existence of the wildcard RR, and the non-
existence of any RRs which, if they existed, would make
the wildcard RR irrelevant (according to the synthe-
sis rules), must be proven. This makes the wildcard
proof mechanism dependent upon an authenticated de-
nial mechanism. DNSSEC processes wildcard proofs as
described above [6].

5.2.5 Increased Computational Load

DNSSEC significantly increases the size of DNS re-
sponse packets, which drastically increases the compu-
tational load on the DNS servers and also increases the
query response time. The process of verifying signed



resource records alone is computationally intensive, par-
ticularly for larger key sizes. The DNSSEC standard al-
lows up to 1024-bit keys. Adding digital signatures to a
domain increases each record size by 5-7 times, which
puts a burden on upstream name servers [14].

DNSSEC answer validation increases the resolver’s
work load, since DNSSEC-aware resolvers will need to
perform signature validation and, in some cases, will
also need to issue further queries. This increased work-
load will also increase the time it takes to get an answer
back to the original DNS client.

5.2.6 Lack of Management Tools

DNSSEC is significantly more complex than DNS.
There are only a few tools to help with the task of main-
taining a signed domain. DNSSEC monitoring and log
analysis tools are still being developed. Debugging man-
ually is a time consuming and difficult task.

5.2.7 Lack of Consistency Control

DNSSEC uses a simple primary-secondary replication
scheme to provide server availability and load distribu-
tion. Only one of the primary or the secondary name
server takes part in a particular query. One compro-
mised server is enough to block, steal, or redirect in-
formation, and issue fraudulent update requests. Data
update takes place only at the primary server, and the
secondary server is not aware of the update until after
the next zone transfer. Thus, there may be inconsisten-
cies between the states of the primary and the secondary
server, and a client query may result in completely dif-
ferent answers depending on which server served the
query. This causes consistency and reliability problems
even without an intentional attack.

5.2.8 DNSSEC NSEC zone walking vulnerability

NSEC is used for authenticated proof of non-existence
of DNS RRs. This introduces the ability for a hostile
party to enumerate all the names in a zone by following
the NSEC chain. NSEC RRs assert which names do not
exist in a zone by linking from existing name to existing
name along a canonical ordering of all the names within
a zone. An attacker can query these NSEC RRs in se-
quence to obtain all the names in a zone. This allows
an attacker to enumerate the zone. Techniques such as
minimally covering NSEC records [31] and NSEC3 [15]
have been proposed to solve this problem.

5.2.9 DNSSEC Problems encountered in .NL

SEGREG is a DNSSEC experiment conducted by NL-
NetLabs [12]. During the experiment one of the .nl
secondaries (dnssec.nic-se.se) was not updated for more
than two weeks due to a memory overflow. This caused
severe problems. The signature lifetime for .nl is one
week, and thus the signatures on nic-se.se all expired.
Users of this server got bad (authoritative) data for .nl.
With DNSSEC, a secondary that is out of date for longer
than the signature lifetime causes the local removal of a
domain.

6 Summary and Conclusions

DNS has major security issues that need to be ad-
dressed urgently. Threats such as Man in the middle
attacks and cache poisoning arise because of the lack
of authentication and integrity in the DNS transaction
process. Inaccurate or nonexistent boundary checking
and error handling conditions in BIND software lead
to exploits such as buffer overflows. Usage threats are
caused by a range of entities from misconfigured client
resolvers to packet filters causing conditions similar to
DDoS.

The Internet Engineering Task Force (IETF) has re-
sponded to the threats by developing DNSSEC, a secure
DNS protocol, to address the data integrity and source
spoofing issues. DNSSEC allows transaction level au-
thentication and secure zone transfers protecting all data
in the zone during the transfer. In DNSSEC, Name-
based authentication attacks can be detected [7].

DNSSEC does not protect against buffer overruns
or DDoS attacks, nor does it provide confidential-
ity. Secure delegation is complex to implement, and
DNSSEC’s error reporting capabilities are minimal.
DNSSEC zone files are significantly larger than their
DNS counterparts, including the load on servers, net-
work and resolver.

The public/private keys used with DNSSEC can be
compromised over time. Keys should be changed at in-
tervals to reduce the risk of compromise. This can be
implemented relatively easily at the lower levels of the
DNSSEC hierarchy, as the public keys are not cached
for very long. Root key rollover however is a problem,
as authentication (chain of trust) is based on known root
keys. Regular key rollover has a significant impact on
the entire DNSSEC structure. Selection of timing pa-
rameters is critical in DNSSEC, involving TTL, signa-
ture inception time and signature expiration time.

Despite the vulnerabilities in DNSSEC, it provides
integrity and authentication to DNS data. DNSSEC is



backward compatible with the existing DNS infrastruc-
ture. We suggest further research in areas such as ad-
vanced dynamic zone transfer protocols using link state
type algorithms, unification of alternate roots with the
ICANN root to form a meta root, resiliency of DNSSEC,
active attacks against distributed directory services such
as X.500, Light Weight Directory Access Protocol
(LDAP) and Kerberos, DNSSEC on mobile devices and
MANETs, and DDoS protection against DNSSEC, to
improve the core functionality of DNSSEC.

7 Acknowledgements

The first author would like to thank Anglia Ruskin
University for their generous support.

References

[1] D. E. 3rd. Secure domain name system dynamic update.
RFC 2137, Internet Engineering Task Force, Apr. 1997.

[2] D. E. 3rd. DNS security operational considerations. RFC
2541, Internet Engineering Task Force, Mar. 1999.

[3] D. E. 3rd. DSA KEYs and SIGs in the domain name
system (DNS). RFC 2536, Internet Engineering Task
Force, Mar. 1999.

[4] D. E. 3rd. RSA/MD5 KEYs and SIGs in the domain
name system (DNS). RFC 2537, Internet Engineering
Task Force, Mar. 1999.

[5] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. DNS security introduction and requirements.
RFC 4033, Internet Engineering Task Force, Mar. 2005.

[6] D. Atkins and R. Austein. Threat analysis of the domain
name system (DNS). RFC 3833, Internet Engineering
Task Force, Aug. 2004.

[7] S. M. Bellovin, J. Schiller, and C. Kaufman. Security
mechanisms for the Internet. RFC 3631, Internet Engi-
neering Task Force, Dec. 2003.

[8] N. Brownlee, K. Claffy, and E. Nemeth. DNS measure-
ments at a root server. Technical report, Cooperative
Association for Internet Data Analysis — CAIDA, San
Diego Supercomputer Center, University of California,
San Diego, 2001.

[9] D. W. Chadwick and G. Zhao, editors. Public Key In-
frastructure, Second European PKI Workshop: Research
and Applications, EuroPKI 2005, Canterbury, UK, June
30 - July 1, 2005, Revised Selected Papers, volume 3545
of Lecture Notes in Computer Science. Springer, 2005.

[10] B. Cohen. DNSSEC: Security for Essential Network
Services. Enterprise Networking Planet, 2003.

[11] I. A. Finlay. CERT advisory CA-2002-15 denial-of-
service vulnerability in ISC BIND 9. Internet, 2002.

[12] R. Gieben. DNSSEC in NL Final Report. Technical
report, NLnet Labs, 2004.

[13] L. Grangeia. Dns cache snooping. Technical report, Se-
curi Team — Beyond Security, February 2004.

[14] O. M. Kolkman. Measuring the resource requirements
of dnssec. Technical report, RIPE NCC / NLnet Labs,
October 2005.

[15] B. Laurie, G. Sisson, R. Arends, and D. Blacka.
Dnssec hashed authenticated denial of existence draft-
ietf-dnsext-nsec3-06. Technical report, Internet Engi-
neering Task Force, June 2006.

[16] J. Leyden. Phishing morphs into pharming. Technical
report, www.theregister.co.uk.

[17] P. Mockapetris and K. J. Dunlap. Development of the do-
main name system. In SIGCOMM ’88: Symposium pro-
ceedings on Communications architectures and proto-
cols, pages 123–133, New York, NY, USA, 1988. ACM
Press.

[18] P. V. Mockapetris. Domain names — concepts and facil-
ities. RFC 1034, Internet Engineering Task Force, Nov.
1987.

[19] P. V. Mockapetris. Domain names — implementation
and specification. RFC 1035, Internet Engineering Task
Force, Nov. 1987.

[20] R. Naraine. Massive DDoS attack hit DNS
root servers. Technical report, Internet News —
www.internetnews.com, 2002.

[21] G. Ollmann. The phishing guide. Technical report, Next
Generation Security Software (NGS), 2005.

[22] C. Partridge and G. Trewitt. HEMS variable definitions.
RFC 1024, Internet Engineering Task Force, Oct. 1987.

[23] C. L. Paul Albitz. DNS and BIND. O’Reilly, 2001.
[24] J. B. Postel. TCP and IP bake off. RFC 1025, Internet

Engineering Task Force, Sept. 1987.
[25] Reseaux IP Europeens (RIPE) NCC. K-root statistics,

k.root-servers.net. Technical report, Reseaux IP Eu-
ropeens, 2004.

[26] Sainstitute. Attacking the DNS Protocol Security Paper
v2. Technical report, Security Associates Institute, 2003.

[27] M. Schiffman. Bound by tradition: A sampling of the
security posture of the internet’s DNS servers. Internet,
2003.

[28] J. Udell. Needed: Rapid internet response. Technical
report, Infoworld — www.infoworld.com, 2004.

[29] P. Vixie. Extension mechanisms for DNS (EDNS0).
RFC 2671, Internet Engineering Task Force, Aug. 1999.

[30] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. Dy-
namic updates in the domain name system (DNS UP-
DATE). RFC 2136, Internet Engineering Task Force,
Apr. 1997.

[31] S. Weiler and J. Ihren. Minimally covering NSEC
records and DNSSEC on-line signing. RFC 4070, In-
ternet Engineering Task Force, Apr. 2006.

[32] D. Wessels and M. Fomenkov. Wow, that’s a lot of pack-
ets. Technical report, Cooperative Association for Inter-
net Data Analysis — CAIDA, San Diego Supercomputer
Center, University of California, San Diego, 2003.


